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Abstract

This work presents the highly accurate numerical calculation of the natural frequencies and buckling loads for thick
elastic rectangular plates with various combinations of boundary conditions. The Reissener—Mindlin first order shear
deformation plate theory and the higher order shear deformation plate theory of Reddy have been applied to the plate’s
analysis. The governing equations and the boundary conditions are derived using the dynamic version of the principle
of minimum of the total energy. The solution is obtained by the extended Kantorovich method. This approach is com-
bined with the exact element method for the vibration and stability analysis of compressed members, which provides for
the derivation of the exact dynamic stiffness matrix including the effect of in-plane and inertia forces. The large number
of numerical examples demonstrates the applicability and versatility of the present method. The results obtained by
both shear deformation theories are compared with those obtained by the classical thin plate’s theory and with pub-
lished results. Many new results are given too.
© 2004 Elsevier Ltd. All rights reserved.

Keywords: Extended Kantorovich method; Plate buckling and vibration; First order plate theory; Higher order plate theory; Dynamic
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1. Introduction

Plate elements are commonly used in civil, mechanical, aeronautical and marine structures. The consid-
eration of natural frequencies and buckling loads for rectangular plates are essential to have an efficient and
reliable design.
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The classical Kirchhoff thin plate theory (CPT) is usually used to carry out vibration and stability anal-
ysis of rectangular plates. CPT assumptions are satisfactory for low mode computation of truly thin plate,
but they can lead to inaccuracy in higher modes calculation or when the ratio of thickness to the dimension
of plate is relatively large. This is because the effects of the rotary inertia, which is neglected in most refer-
ences, and the transverse shear deformations, which cannot be considered in the Kirchhoff theory, become
significant in thick plates. Therefore a number of shear deformation plate theories were developed. The sim-
plest one is the first order shear deformation plate theory (FOPT) that is famous as the Reissener—-Mindlin
theory. This approach extends the kinematic assumptions of the CPT by releasing the restriction on the
angle of shearing deformations (Reddy, 1999; Wang et al., 2000). The transverse shear strain is assumed
to be constant through the thickness of the plate, and a shear correction factor is introduced to correct
the discrepancy between the actual transverse shear stress distribution and those computed using the kin-
ematic relations of this theory. The shear correction factors depend not only on geometric parameters, but
also on the loading and boundary conditions of the plate. The application of the Reissner—Mindlin theory
to plate problem has attracted the attention of many researchers. Various methods have been applied to
compute natural frequencies and buckling loads for thick rectangular plates with different boundary con-
dition, namely the analytical Navier (Reddy and Phan, 1985) and Levy (Liew et al., 1996; Zenkour, 2001)
solutions, the Rayleigh-Ritz method (Liew et al., 1995, 1998; Wang et al., 1994; Kitipornchai et al., 1993;
Cheung and Zhou, 2000), the finite strip method (Dawe and Roufael, 1982; Roufael and Dawe, 1980;
Mizusawa, 1993), the finite difference and finite elements methods etc.

Higher order shear deformation plate theories (HOPT) use higher order polynomials in the expansion of
the displacement components through the thickness of the plate. According to the assumptions of HOPT
the restriction on warping of the cross section is relaxed, and allows variation in the thickness direction
of the plate. Unlike the FOPT, the HOPT requires no shear correction factors. Applications of HOPT
for problems of buckling and vibration of thick plates have been discussed by a number of authors. Reddy
and Phan (1985) have used the Navier solution in order to analyze the free vibration and buckling of iso-
tropic, orthotropic and laminated rectangular plates with simply supported edge condition according to the
HOPT of Reddy (1999). Hanna and Leissa (1994) have developed a completely higher order shear defor-
mation plate theory, including energy functional, equation of motion and boundary condition. They have
used Rayleigh—Ritz method for free vibration solution of fully free rectangular plate. Doong (1987) have
used the average stress method in order to develop high order plate theory in which an arbitrary initial
stress state is included. The governing equations are obtained using a perturbation technique. He has pre-
sented the Navier solution for natural frequencies and buckling loads for simply supported rectangular
plate. Matsunga (1994) have derived a HOPT through Hamilton’s principle by using the method of power
series expansion of displacement components. Stability and free vibration analysis have been performed for
simply supported plate by Navier method. A broad literature survey on the vibration analysis of shear
deformable plates also have been done by Liew et al. (1995).

This work presents the calculation of the natural frequencies and buckling loads for thick elastic
rectangular plates with various boundary conditions and includes the effects of shear deformation and ro-
tary inertia. The dynamic version of the principle of minimum of total energy is adopted in derivation of the
governing equations and the boundary conditions for Reissener—-Mindlin FOPT and HOPT of Reddy. The
solution is based on the extended Kantorovich method (Kerr, 1969; Yuan and Jin, 1998; Eisenberger and
Alexandrov, 2003). According to this approach solution is assumed to be separable in the directions of
plate’s edges. Then, the solution in one direction, x for example, is specified a priory, and the solution in
the y-direction is determinated by solving an ordinary differential equation derived from the associated var-
iational process with appropriate boundary conditions. In the next step, the obtained solution is used as the
known function, while the solution in the second direction is re-determinated by another Kantorovich solu-
tion process. These iterations are repeated until the result converges to a desired degree. In the case that two
parallel edges are simply supported this procedure yields exact results, as it will be shown. In the solution in
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one direction, the exact element method for the vibration and stability analysis of compressed members is
used (Eisenberger, 1991, 1995). This approach provides for the derivation of the dynamic stiffness matrix
including the effect of in-plane and inertia forces. The desired crucial parameter (buckling load or natural
frequency) is found as a value that leads to the singularity of the stiffness matrix. Free vibration and sta-
bility of rectangular thick plates are analyzed by varying the plate-aspect ratios and thickness—width ratios.
The results obtained by both shear deformation theories (FOPT and HOPT) are compared with those from
the classical plate theory (CPT) and with published results. Many new results are given too.

2. Analysis of rectangular plates using shear deformation theories

Consider an isotropic rectangular plate of plan-form L, and L, with constant thickness /. The plate has
arbitrary boundary condition and is assumed to be subjected to in-plane load for buckling analysis and to
inertia forces for vibration analysis. The coordinate system is taken such that the x—y plane coincides with
the middle plane of the plate and the origin of the coordinate system is taken at the lower left corner of the
plate (see Fig. 1). Note that the in-plane shear forces are not included. As Yuan and Jin (1998) showed,
the simplest one term separation of variables, which is used in the current study, does not enable to include
in-plane shear force, as these cancel out in the derivation.

3. First order shear deformation plate theory
3.1. Governing equations

According to Reissener—Mindlin theory for harmonic motion the displacement field is taken as

a(x,,2,t) = 2, (x,3,1) = 29, (x, y)e"”" (la)
o(x,y,z,t) = ZJy()@y, t) = thy(x,y)ei“” (1b)
Vv(x,y,z, t) = wo(xayv t) = WO(xvy)eiwt (1C)
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Fig. 1. Geometry and the coordinate system of rectangular plates.
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where (i1, v, w) are the displacement components along the (x, y,z) coordinate directions, respectively; wy is
the transverse deflection of a point on the middle plane, ¥, and y, denote the rotations around to the
x- and y-axes, correspondingly, and w denotes the angular natural frequency.

The out of plane energy functional for rectangular plate I1, associated with the above displacements, can
be written in terms of strain energy of bending, kinetic energy of vibration and potential energy of in-plane
loads (see Fig. 1) in following form (Reddy, 1999):

_! oy, Q\* D(L—v) (g, Q\* 12y, 20,

n=y+f /A{D(aw) T ((V@) R
2 2 3

+kGh<<n//x+%> +<¢y+aa—v;°>> _w2p<hw§+i’—2(w§+wf.))

owy : Owy 2 drd )
N () w () favas @
In which, the shear modulus G is related to Young’s modulus E and Poisson’s ratio v by G = E/2(1 + v),
D = EI*/12(1 —?) is the bending rigidity of the plate, p is the mass density of the plate’s material, and & is
the shear correction factor to compensate for the discrepancy between the parabolic distribution of trans-
verse shear stresses and the constant state of shear stresses resulting from the kinematic assumptions of this
theory.

According to the classical Kantorovich method for 2-D problem we assume that the solution is separa-
ble, and can be written as

w(x,y) = wx)W(y) (3a)
Vol y) = fX)F () (3b)
¥, (x,p) = d(x)2(y) (3¢)

Substitution of the assumed solution Egs. (3a)—(3c) and its derivatives into the energy functional equa-
tion (2) yields

kG

T3

Ly Ly
/O /0 (f°F? + 2fw FW + W . W? + §* @ + pwdW , + w* W ) dxdy
D Ly Ly
) / / (PHSF + QW ¢ + QW W + Pow’ W + Pw W ) dxdy (4)
0 0 ! k

where Q> = w’ph/D and P; = N,/D. In order to obtain an equation involving only one function, for exam-
ple w(x) we assume function W(y) as known, and after integration over the direction y the functional takes
the form

D ("
1T = 3 / (S1f2+ 829" + 283/ + Saf® +25sf ¢, + Sed’,zx + 877 + 2S5 fw, + Sow’, + S10¢p’
0

+ 251w + 512W2 - S13QZf2 - 51492¢2 - SlSQZW2 - SISPXW%V - Slépywz)dx (5)
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where the coefficients S;—S¢ are defined as

L, L, L,
S, = / F’dy, S,= / o’ dy, S;= / VF®,dy,
0 0 : 0

Ly 1 Ly 1 Ly 1
Sy = / =(1- v)F dy, Ss= / (1 =v)F,@dy, S¢= / ~(1 —v)®*dy,
2 ) )

S; = k/ dey, S = k/ )FWd Sy = k/

Ly J— L.V —
Slo_k/ 6(1 )qudy’ Su:k/ 6(1 : Y o, dy, Slz:k/ LZV)WZ i,
0 " 0 h ’ 0 h P

L, Ly Ly Ly
Sa= [ PG su= [ R0 si= [T so= [Tt
0 0 0 0 '

According to the dynamic version of the principle of virtual displacement, i.e., Hamilton’s principle the
first variation of the functional should be equal to zero. Thus after integration by parts we get

V) w2 dy, (6)

LX
oIl = / (((PuS1s — So)Wax + (S — Q%S15 — P,S16)w — S [« + S11¢)dw
0

(=81 fiwx + (Ss+ 87— LS13)f + (S5 — S3) ¢, + Ssw.)Sf + (=Se o + (S2 4+ S0 — LSua)
+ (83 = 85)fx + Suw)d¢) dx + ((So — PuSi5)wy + Ssf) o+ (Sifx +S30)
+ (Ssp, + Ssf)8pl; =0 (7)

Each term in the above equation have to be equal to zero. From the first integral we obtain the system of
differential equations in the following form:

For 6w

(PeSis — So)Wax + (S12 — Q*S15s — PSig)w — Sgfx +S11¢p =0 (8)
For of

=1 oo+ (Sa 4+ 87 = D2S13)f + (S5 = S3) ¢, + Sgw =0 9)
For 6¢

—S6 o + (S2 4 S10 — D2S14)d + (S5 — S5)fx + Suw =10 (10)

The remaining expressions are the natural boundary conditions:

3f: My = (Sifu+ S3)l5" (11a)
8¢ M, = (Ssdf + Sedop )i (11b)
3¢: My = (Ssf +Set .o (11c)

where Q the shear force, My, the bending moment and M, twisting moment on the corresponding edge of
the plate.
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3.2. The solution

For the solution, we use the following dimensionless coordinates: ¢ = x/L, and n = y/L,. Now we
assume the solution of the system Eqgs. (8)—(10) as three infinite power series of the following form:

- i (12a)

f=> 5 (12b)
i=0
o=> ¢ (12¢)

For the solution we have to find the appropriate coefficients of the polynomials in Egs. (12a)—(12c). Cal-
culating all the derivatives and substituting them back into Egs. (8)—(10), we obtain recurrence formulas for
calculation w;y», fits, ¢i+o In the series Eqgs. (12a)—(12c) as a function of the first two terms of the each series
(Eisenberger, 1991, 1995;Eisenberger and Alexandrov, 2003):

(S5 — Q*S)5 — S16Py)L2w; — SsLi(i + 1) fie1 + SuL ¢,

= 1

e (So — P.Sis)(i + 1)(i +2) (13a)

1oy = S8 87 = SUQILS, 4 SiLali+ Dwics + (S5 = SYLi+ Debiy (13b)
" S+ 1)i+2)

by = (Sy 4 Sio — S1uQ) L2, + S1Liw; + (S5 — S5)Lo(i + 1) fin .

Se(i+1)(i +2)

Then the first two terms of each series should be found using the boundary condition (Eisenberger and
Alexandrov, 2003).

Based on the above technique and using the finite element approach, the six basic shapes can be found
with the following boundary conditions:

w(0) =1, w(l) = 7(0) = /(1) = ¢(0) = ¢(1) = 0 (14a)
w(l) =1, w(0) = £(0) = /(1) = ¢(0) = ¢(1) = 0 (14b)
f0) =1, w(0) =w(l) = f(1) = ¢(0) = (1) = 0 (14c)
S =1, w(0) =w(l) = 7(0) = ¢(0) = (1) = 0 (14d)
¢(0) =1, w(0) =w(1) =/(0) = /(1) = (1) =0 (14e)
(1) =1, w(0) =w(1) = f(0) = f(1) = $(0) = 0 (14f)

The calculated shapes are the “exact’ solution for the system of differential equations. The word “exact”
means “‘as exact as one can get on a digital computer”. This is so since the calculation of the series is
stopped according to a preset criterion so that the values of last six terms are less than an arbitrary small
criterion (in the present work the criterion is taken as 1072°).
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The terms of the stiffness matrix are defined as the holding actions at both ends of the strip, due to unit
translation or rotations, at each of the six degrees of freedom, one at the time. Then according to condition
Egs. (11a)—(11c), with transformations to the non-dimensional coordinates we have for the columns of the
first order stiffness matrix Sg,j) the following expressions:

S6(1,1) = S 0(0) + Sy7w(0) ~ Pusis - w(0) (15a)
Se(2:1) = 517-£7(0) + 5:97(0) (15b)
Se(3,i) = Ss/9(0) + S6L%q5f? (0) (15¢)
Sp(4,i) = Ssf (1) + SgLixwfgu) —P.Sisw(1) (15d)
S6(5.1) = S1 - 7(1) + 5:9(1) (15¢)
S6(6.1) = S5/(1) + o9 (1) (156)

where W, £ ¢ are the shapes that are calculated with the boundary conditions of Eqs. (14a)—(14f)).

Then the natural frequency for the plate can be found as the frequency w that causes the determinant of
the corresponding dynamic stiffness matrix to become zero. Also the buckling loads are the in-plane loads,
that lead to singularity of the appropriate matrix, with the frequency w = 0. This is done using a program
that converges on the values that satisfy this criterion.

Having the stiffness matrix for the critical factor we can find the functions of the general displacements
for this state by the following procedure: The vector of the nodal displacements is an eigenvector of the
stiffness matrix, which corresponds to the desired parameter. Thus, the functions of general displacements
are calculated by multiplying the basic shapes functions by the nodal displacement, which is appropriate to
each of them.

4. Higher order shear deformation plate theory
4.1. Governing equations

The displacements based on the third order shear deformation plate theory of Reddy (1999) are taken as

4z 0 .
u(xv)/’Z» t) = (wa _3_;2 (lﬁx“t‘—a‘i{)))emt (16a)
v —423 aW iw
o(x,p,z,1) = (z%- ey (% + —6y0> ) el (16b)

Ww(x,,z,t) = woe'" (16¢c)
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The strain energy of the bending of plate in this case is (Reddy, 1999)
2

o=3 [ (ol () () +a () +a (5)

32 Oy, Dwy 32 Oy, B'wy (68 oy, O, 1 3wy Owy

105 ox x2 105 9y )2 105 ox ay 21 92 o2

16 o P 16 00, Ty (1) (68 (00 68 (00’
105 ox 02 105 0y ox? 2 105 dy 105 \ ox

136 0y, 0%, 4 (Dwy) 64 Owy oy, 64 OPwy O,
+ T '

105 dy ox xdy) 105 xdy dy 105 oxdy ox

2

+ 3 Gn(y, 1+ 20 8 v+ 2 ara (17)
15 * T Bx 15 T oy Y
After utilization of the Kantorovich solution technique and integration over the y-direction, we obtain

D [k
U=7 / {12+ 820 + Saw’, + Saw? = 285 £ W + 286w + 2871 fch — 2S5 o + 2So W
0

+ 2810WW 1 + S11f? + SlZ(p?X + 2813/, + Siaw’ — 2815w f — 2816w, + Siaf”
+2S18fwﬁx+S19Wi+S20¢2 +2S21¢w+S22w2}dx (18)

where the S-coefficients are defined as

68 (b 68 » ;
_ F (15 w-d
S = 105 A dya Sy = 105 / ya S; = / ),

1 Ly
_ L dy. S @, W,,d
84 21/0 Wiydy, Ss= 105/ FWdy, 8¢ = 105/ »
s, =98 /LFqsd Sg = v/’FW dy,  So— 16v/Ly<de
TT105" ), T 8_105 ARG T A

Si = | /LWW dy, Si= 34 (1 v)/Lszd S = 34 (1 v)/Lyqﬂd
*—V | e — p— —_— —
R RN w21 =105 A R I 0 "

=2 [T R edy, s =202 /L)’Wzd s E(lv)/LyF wd v
13 — 105 v o By Y, 14 = 21 o » 15 = 105 0 By Vs
16 Ly 16(1 —v) /L’ 16(1 —v) Ly
S = 1— owdy, Sy;=—-+—"> F*dy, S :—/ Fw dy,
16 105( V)/O y 17 52 A Ly 18 32 A Ly
16(1 16(1 —v Ly 16(1 —v Ly
Sig=——5—" Wzdy, Sy = %/ ‘pzd% Sy = % / oW ,dy,
0 Sh 0 5h 0

1—vy :
S :— w?d
22 5h2 /o 2y

The assumed free vibration is harmonic and based on the displacement field (Eqs. (16a)—(16c)) we get the
expression of kinetic energy in the form
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> P JE i X 6WO aWO 2
- hw,
//[315 i +315 Vi +315 Vi ar 315 W5 y

h3 6W() h3 aWo 2

After separation and integration over y-direction it takes the following form:

D ("
T:Q2§/ {S23f2+Sz4¢2+2S25fW7x+2S26(].')W+527W2+S28W1+S29W2}dx (21)
0
where S»3,...,S59 are
s [P irgy s = /Lyh2<1'>2d S 4/Lyh2FWd s=t " waw.q
27315, % 24_315 e VT Y 9% =35 v &

1
2002 27772
527—/ wrdy, Sy = h W=dy, Sy = 252/ W, dy

252
(22)

The potential energy of the in-plane forces after substituting of the assumed solution and the integration
over the y-direction takes the following form:

D [*

V=3 / (=S30Pw’ + S31P,w’) dx (23)

A :
where S-coefficients are defined as

Ly Ly

S30 = / W2 dy, S31 = —/ Wz} dy (24)

0 0 '
According to Hamilton’s principle the first variation of the functional should be equal to zero
O =38U —3T +3dV =0 (25)

After integrating the expression of virtual energy by parts and collecting the coefficients of dw, 6f and ¢
we obtain the equations of motion for the strip element:

For ow
S3W e + (2810 — S1a — S19 + S2° + S30P )W + (Sa + S22 + (Sa7 + S29)Q* + Sy P))w
— 85/ e — (Sg — Sis + Sig — S252%) f + (S + S16)P o + (S6 + S + S22%)¢) =0 (26)
For &f
(SsWoex + (S5 — S15 + Sis — S2sQ)w, — Si for + (St + Si7 + SnQ)f + (S5 — S71)¢,) =0 (27)
For 6¢
((So + S16)W.ex + (S6 + Sa1 + S26Q7)w + (S7— S13)fx — S12¢ 4 + (S2 + Sao + 5242%)$) = 0 (28)

The natural boundary conditions (action at the ends of strip elements) are obtained as
ow: Q= _(S3W,xxx + (S0 — Sia — Sio + S Q* + S3Py)Wwy — Ssfox + (S1s — Sis + S25Q%)f

+(Sy + 516)(#1) ﬁ"

(29a)

6W7x2 R = (S3W7x_v + Sl()W — S5f:x + Sgd)) (L),

(29b)
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Of : My = (=Sswe — Sgw + 81/ + S79); (29¢)

0d: My = (S, + Si3f — Siew)lg (29d)

4.2. The solution

We again use the dimensionless variables ¢ and n and the assumption of polynomial variation of all the
functions over the strip, Egs. (12a)—(12c). Now by substitution the assumed solutions, Egs. (12a)—(12c) into
the field equation, Egs. (26)—(28) we get recurrence formulas for the polynomial terms. All polynomial coef-
ficients dependent on the first four terms of w and the first two of fand ¢. In contrast with the FOPT anal-
ysis, when unknown polynomial terms could be found one after another, in the current HOPT formulation
the follow algorithm should be used to calculate them.

Firstly, the f> term is calculated for i = 0 from the following expressionf:

1
= 25,1 (6Ssw3 + L2(Sg — Sis + Sig — S2s@%)wy + L3 (S11 + S17 + Su @) fo + (S15 — S7)L2¢h,) (30)
Then for i =0,...,00, the ¢4, terms are determinated by
1
g = ((So + S16)Wipa (i +2)(i + 1) + L2(Ss + Sa1 + S26Q*)w;
irn Slz(i+2)(i+1)(( o+ S1e)Wia (i +2) (i + 1) + L (Se + Sa1 + S22 )w
+ Lo(S7 = Si3)finr (i + 1) + L3(S2 + Sao + S2u2%) ;) (31)

Now the terms w;y4 and f;+3 can be found from the system of two equations:

{ AY)1W1‘+4 + Agi,)zfi% = BY) (32)
AT i+ 453V fis = BY
where the terms A and B are defined by following expressions:
A = =S5+ 4) (i +3) (i +2)(i +1)
AV = SsL(i+3)(i+2)(i+1)
0 (33a)
Ay =—=Ss(i+3)(i+2)(i+1)
AS) = SiL (i +2)(i+ 1)
B = Sywiy(i+4) i+ 3)(i +2)(i + 1) + L2(2810 — S1g — S19 + S22 + S0P )wia (i +2)(i + 1)
+ L3Sy + San + (Sa7 + S29) Q2% + S35 Py)w; + L3 (=S + S5 — Sig + S25Q) fi1 (i + 1)
+ L3(So 4 S16)ia(i +2) (i + 1) + LY(Ss + Sa1 + S262%) ¢, (33b)
BY = Sswies(i+3)(i +2)(i + 1) + L2(Ss — S15 + Sis — Sas@)wi1 (i + 1) + L3Sy + Si7 + $52°)f;
+ L3(S13 — S7) ¢ (i + 1) (33¢)

Then the first four terms of w and the first two of fand ¢ should be found based on boundary conditions.
For the current formulation the degrees of freedom are lateral displacement, its derivative and two rota-
tions around the x- and y-axes at both the ends of the strip element. The terms of the stiffness matrix
are the holding actions at the end of the strip element due to unit displacement in the desired direction when
all other degrees of freedom are restrained. Then for the current formulation the holding end actions are
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shear force, twisting moment, ordinary and high order bending moments. Thus, according to conditions of
Egs. (29a)—(29d), with transformation to dimensionless coordinates we have the terms of the higher order
stiffness matrix Sg(i,j) as follows:

, L) ! 2 0 Lo o)
SH(l, l) = —ﬁw&é(O) — f (SIO — S14 — S19 + Sng + Sg()Px)W,é (O) + Pszéé(O)
x93 X X
. 1 ;
2
= (Sis = Sus + 5252/ (0) = (S5 + $16)9Y (0) (34a)
‘X
. 1 ; 1 ; . )
Sia(2,1) = 3 S0/ (0) = S5/ (0) + 806 (0) + S (0) (34b)
X ‘X
Su(3,1) = ~S1£9(0) = — S5 (0) + S5 (0) — Sy (0 34
u(3,1) = 851 (0) — 7385w (0) + 57¢7(0) — Ssw™(0) (34c)
X X
St i) = -51267(0) + S5 (0) — - Sy 34d
u(4,i) = —S1¢; (0) + 813/ (0) 16W (34d)
L, ' L, '
Table 1
Frequency factor 4 for SSSS
L,/L, Theory h/L, Mode
1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3
1 CPT - 2.0000 5.0000 10.0000 5.0000 8.0000 13.0000 10.0000 13.0000 18.0000
FOPT 0.1 1.9317 4.6084 8.6162 4.6084 7.0716 10.8093 8.6162 10.8093 14.1908
0.2 1.7679 3.8656 6.6006 3.8656 5.5879 7.9737 6.6006 7.9737 9.9802
0.3 1.5768 3.1962 5.1426 3.1962 4.4356 6.0836 5.1426 6.0836 7.4342
0.4 1.3970 2.6771 4.1505 2.6771 3.6199 4.8521 4.1505 4.8521 5.8537
HOPT 0.1 1.9317 4.6088 8.6188 4.6088 7.0732 10.8145 8.6188 10.8145 14.2022
0.2 1.7683 3.8693 6.6176 3.8693 5.5984 8.0030 6.6176 8.0030 10.0362
0.3 1.5780 3.2059 5.1807 3.2059 4.4605 6.1456 5.1807 6.1456 7.5452
0.4 1.3996 2.6942 42116 2.6942 3.6609 4.9482 42116 4.9482 6.0192
1.5 CPT - 1.4444 2.7778 5.0000 4.4444 5.7778 8.0000 9.4444 10.7778 13.0000
FOPT 0.1 1.4082 2.6491 4.6084 4.1303 5.2656 7.0716 8.1942 9.1982 10.8093
0.2 1.3164 2.3612 3.8656 3.5117 4.3405 5.5879 6.3282 6.9717 7.9737
0.3 1.2010 2.0526 3.1962 2.9336 3.5439 4.4356 4.9536 5.3986 6.0836
0.4 1.0851 1.7818 2.6771 2.4742 2.9436 3.6199 4.0090 4.3419 4.8521
HOPT 0.1 1.4082 2.6491 4.6088 4.1306 5.2662 7.0732 8.1965 9.2015 10.8145
0.2 1.3166 2.3620 3.8693 3.5145 4.3457 5.5984 6.3433 6.9917 8.0030
0.3 1.2016 2.0553 3.2059 2.9412 3.5569 4.4605 4.9879 5.4425 6.1456
0.4 1.0864 1.7871 2.6942 2.4879 2.9662 3.6609 4.0643 4.4115 4.9482
2 CPT - 1.2500 2.0000 3.2500 4.2500 5.0000 6.2500 9.2500 10.0000 11.2500

FOPT 0.1 1.2227 1.9317 3.0762 3.9611 4.6084 5.6580 8.0453 8.6162 9.5468
0.2 1.1521 1.7679 2.7023 3.3847 3.8656 4.6183 6.2313 6.6006 7.1916
0.3 1.0608 1.5768 2.3188 2.8385 3.1962 3.7449 4.8862 5.1426 5.5497
0.4 0.9664 1.3970 1.9934 24004  2.6771 3.0969 3.9585 4.1505 4.4546
HOPT 0.1 1.2227 1.9317 3.0763 3.9614  4.6088 5.6588 8.0475 8.6188 9.5505
0.2 1.1522 1.7683 2.7036 3.3872 3.8693 4.6244 6.2457 6.6176 7.2134
0.3 1.0612 1.5780 2.3227 2.8454 3.2059 3.7602 49191 5.1807 5.5972
0.4 0.9673 1.3996 2.0008 2.4130 2.6942 3.1230 4.0118 4.2116 4.5302




1236

L. Shufrin, M. Eisenberger | International Journal of Solids and Structures 42 (2005) 1225-1251

1 i
(S10 = S14 — Sto + S22 + Sson)Wf¢>(1)

s@o:fpgﬂdnfg

1 i i 1 i
+F55f(52(1) — (S15 — Sis + S252%) f(1) —L—X(S9 +Sl6)¢,(§>(1)
. Lo ; ;

M@ﬁ=—&MMU—E&ﬁKU+&¢NU+&WWU

L 1. ; .
Su(7,8) = 7S (1) = 2Ssw(1) + 5797 (1) = Sw(1)

1 i i 1 i
Su(8,i) = L—Slzqﬁ,(g)(l) + S/ (1) _L_S16Wfé)

70%

60% 4—— : /\v/

50% /\\/ /\v/ TRy
wi SN BN N
30% / / PaN ~ -N — 1/Ly=0.3
- / / \/‘ | y=0.

e ——H/Ly=0.4

difference

%

10%

0%

70%

:::: /"" == H/Ly=0.1

40% / /—""’_ —=-H/Ly=0.2

- /// ’/
'/,/' —//
-~

—— H/Ly=0.3

% difference

20%

—— H/Ly=0.4

X e X =X

10% T—a=

e > *
X

0%
1.1 21 3.1 1.2 22 3.2 1.3 23 3,3
Mode

Fig. 2. Comparison of normalized frequency for SSSS plates: % difference CPT to HOPT.

3.0%

/

2.5%
-~ F/Ly=0.1

2.0% /
1o /\v/ —=— F/Ly=0.2
1 A 4 e
0.0% = T T ——X— T

1.1 2.1 3.1 1.2 22 3.2 1.3 2.3 3.3
Mode

% difference

Fig. 3. Comparison of normalized frequency for SSSS plates: % difference FOPT to HOPT, L,/L, = 1.0.

(34e)

(34f)



L Shufrin, M. Eisenberger | International Journal of Solids and Structures 42 (2005) 1225-1251 1237

where w'”, £ and ¢ are the shapes calculated as the solution of the system of the differential equations of
motion, Egs. (26)-(28) according to the above recurrence technique with the following boundary
conditions:

w(0) =1, w(l) =we(0) =we(l) =f(0) = f(1) = ¢(0) = ¢(1) =0 (35a)
w(l) =1, w(0) =we(0) =we(l) =1(0) = f(1) = p(0) = ¢(1) =0 (35b)
w(0) = Li w(0) = w(l) = we(1) = £(1) = £(0) = $(0) = $(1) = 0 (35¢)
Table 2
Comparison of the frequency factors A for SSSS plates (k = 0.82305)
L./L, Theory Work h/L, Mode
1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3
1 FOPT Present 0.1 1.9311 4.6050 8.6054 4.6050 7.0642 10.7932 8.6054 10.7932 14.1647
Reddy and Phan 1.9311 4.6077 8.6153 4.6077 7.0724 10.8101 8.6153 10.8101 14.1906
(1985)
Liew et al. 1.9311 4.6050 8.6055 4.6050 7.0642 10.7932  8.6055 10.7932 -
(1993b)
Present 0.2 17661 3.858 6.582 3.858 5.5737 7.9485  6.582 7.9485  9.9444
Liew et al. 1.7661 3.858  6.582  3.858 5.5737 7.9485 6.582 7.9485 -
(1993b)
HOPT Present 0.1 1.9317 4.6088 8.6188 4.6088 7.0732 10.8145 8.6188 10.8145 14.2022
Reddy and Phan 1.9332 4.6139 8.6339 4.6139 7.0828 10.8412 8.6339 10.8412 14.2487
(1985)
Matsunga 1.9353 4.6222 8.6609 4.6222 7.1036 10.8786  8.6609 10.8786 14.3048
(1994)
3-D solution Liew et al. 1.9342 4.6222 8.6617 4.6222 7.103  10.879 8.6617 10.879
(1993a)
HOPT Present 0.2 17683 3.8693 6.6176 3.8693 5.5984  8.003 6.6176  8.003  10.0362
Matsunga 1.7759 3.8991 6.6867 3.8991 5.6527 8.0925 6.6867 8.0925 10.1524
(1994)
3-D solution Liew et al. 1.7758 3.8991 6.6868 3.8991 5.6524 — 6.6868 — -
(1993a)
1.5 FOPT Present 0.1 1.4079 2.6479 4.605 4.1275 5.2613 7.06422 8.1845 9.1862 10.7932
Liew et al. 1.4079 2.6479 4.605 4.1276 5.2613 7.0642 8.1845 - -
(1993b)
Present 0.2 13153 2.358 3.858 3.5053 4.3313 5.5737 6.3108 6.9514  7.9485
Liew et al. 1.3153 2.358  3.8581 3.5053 4.3313 55734 63108 - -
(1993b)
HOPT Present 0.1 1.4082 2.6491 4.6088 4.1306 5.2662 7.0732  8.1965 9.2015 10.8145
3-D solution Liew et al. 1.4096 2.6538 4.1415 5.2834
(1993a)
HOPT Present 0.2 13166 2.362 3.8693 3.5145 4.3457 5.5984 6.3432  6.9917 8.003
3-D solution Liew et al. 1.3209 2.3747 3.5398 4.3489
(1993a)
HOPT Present 0.3 1.2016 2.0553 3.2059 2.9412 3.5569  4.4605 4.9879 54425 6.1456
3-D solution Liew et al. 1.2088 2.0731 29719 3.5967
(1993a)
HOPT Present 04 1.0864 1.7871 2.6942 2.4879 2.9662 3.6609 4.0643 4.4115 4.9482
3-D solution Liew et al. 1.0954 1.8064 2.5168 2.9998

(1993a)
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we(l) =Ly, w(0) =w(l) =we(0) =f(1) = f(0) = (0) = ¢(1) = 0 (35d)
SO) =1, w(0) =w(l) =we(0) =we(l) = /(1) = ¢(0) = ¢(1) = 0 (35¢)
S =1, w(0) =w(l) =we(0) =we(l) = f(0) = ¢(0) = ¢(1) = 0 (35f)
$(0) =1, w(0) = w(l) =we(0) =we(1) = f(0) = f(1) = ¢(1) = 0 (352)
(1) =1, w(0) =w(l) =we(0) =we(l) = £(0) = /(1) = ¢(0) = 0 (35h)

Now the desired critical factor (buckling load or natural frequency) can be found as the value that causes
the singularity of the appropriate stiffness matrix. And corresponding to this factor the general displace-
ments can be determinated by the way described for FOPT analysis.

5. Numerical examples

In order to obtain a high precision solution for stability and vibration problems of thick rectangular
plates and simultaneously demonstrate the applicability and versatility of the present method, numerical
calculations have been performed for a large number of plates with different length-width ratios, thick-
ness—width ratios, and various combinations of boundary conditions.

Table 3
Comparison of the frequency factors 4 for SSFF plates (k = 0.82305)
L,/L, Theory Work h/L,  Modes
1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3
1 FOPT Present 0.1 0.9564  3.6815 7.7557 1.5587 4.3327 83396 3.4289  6.2908
Liew et al. (1993b) 0.9564 3.6815 7.7558 1.5588 4.3329 - 3.4290 6.2910
Present 0.2 0.9096 3.1630 6.0244 1.4267 3.6368 6.3930 2.9482 5.0107
Liew et al. (1993b) 0.9096 3.1630 6.0245 1.4267 3.6369 - 2.9482 5.0107
HOPT Present 0.1 0.9566 3.6841 7.7668 1.5595 4.3366 8.3530 3.4315 6.2990
3-D solution  Liew et al. (1993a) 0.9571  3.6919 1.5603  4.3454 3.4361
HOPT Present 0.2 0.9103  3.1706  6.0540 1.4287 3.6475 6.4271 29547 5.0311
3-D solution  Liew et al. (1993a) 0.9120  3.1888 1.4309  3.6651 2.9650
HOPT Present 0.3 0.8493  2.6792 47826 1.2824 3.0323  5.0428 2.5050 4.0342
3-D solution  Liew et al. (1993a) 0.8523  2.7010 1.2855  3.0500 2.5168
HOPT Present 0.4 0.7842  2.2821 39077 1.1436 2.5549 4.1046 2.1368  3.3130
3-D solution  Liew et al. (1993a) 0.7883  2.3019 1.1466  2.5665 2.1469
2 FOPT Present 0.1 0.2395 09564 2.1210 0.6701  1.5587 2.7748  2.5304  3.4289
Liew et al. (1993b) 0.2395 09564 2.1210 0.6701  1.5588  2.7550  2.5304  3.4290
Present 0.2 0.2362 09096 1.9216 0.6310 1.4267 2.4388 22614 2.9482
Liew et al. (1993b) 0.2362 09096 19216 0.6310 1.4267 2.4388 2.2614 2.9482
HOPT Present 0.1 0.2395 09566 2.1218 0.6704 1.5595 2.7767 2.5315 3.4315
3-D solution  Liew et al. (1993a) 0.2396  0.9571 0.6704  1.5603 2.5338
HOPT Present 0.2 0.2362 09103 1.9244 0.6317 1.4287 2.4438 22644 2.9547
3-D solution  Liew et al. (1993a) 0.2363  0.9120 0.6319  1.4309 2.2705
HOPT Present 0.3 0.2313  0.8493 1.7033  0.5862 1.2824 2.1085 1.9844  2.5050
3-D solution  Liew et al. (1993a) 0.2315  0.8523 0.5866  1.2855
HOPT Present 0.4 0.2251 0.7842 1.5014 0.5386 1.1436 1.8230 1.7383  2.1368
3-D solution  Liew et al. (1993a) 0.2255  0.7883 0.5389  1.1466
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In the previous applications of the extended Kantorovich method for classical thin plate theory
(Eisenberger and Alexandrov, 2003) it has been shown that the initial assumed function is neither required
to satisfy the essential boundary conditions nor the natural boundary conditions and the quality of the
assumption influences only on the number of iterations. According to the present formulations of
the two higher order shear deformation theories the solution is the set of the dependent functions of the
displacements. Therefore, in order to obtain correct relations between the assumed functions, so that they
may satisfy any boundary conditions, the initial displacements are chosen as the lateral deflections and
bending rotations of a Timoshenko and high order beams (Eisenberger, 2003), taken from the appropriate
direction of the plate as a unit width strip. Although the beam’s shapes are not always congruent with the
plate’s displacement, the iteration convergence proves to be extremely fast. For most cases, only one to two
cycles of the iterations are required to produce almost convergent result. The subsequent iterations only
serve for more precious determination of the trailing digits. In the present work, the maximal tolerance
for the relative error between the iteration steps is taken as 0.0001%. Unlike most of the other numerical
methods, in which a better result is obtained by increasing of number of unknowns, the solution in the ex-
tended Kantorovich method is improved by continuous enhancement of the operator between successive
iteration steps, without additional unknowns.

Table 4
Frequency factor 4 for CCCC plates

L,/L, Theory h/L, Mode
1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

1 CPT - 3.6475 7.4375 13.3645 7.4375 10.9666 16.7203 13.3645 16.7203 22.2966
FOPT 0.1 3.2978 6.2877 10.4299 6.2877 8.8127 12.5568 10.4299 12.5568 15.8491

0.2 2.6889  4.6915 7.2270  4.6915 6.2994 8.5174 7.2270 8.5174 10.4108

0.3 2.1733 3.5862 5.3546  3.5862 4.7292 6.2578 5.3546 6.2578 7.5534

0.4 1.7897  2.8592 42192 2.8592 3.7435 4.9019 4.2192 4.9019 5.8833

HOPT 0.1 3.3046 6.3123 10.4946  6.3123 8.8594 12.6471 10.4946 12.6471 15.9858

0.2 2.7171 4.7751 7.4078  4.7751 6.4343 8.7458 7.4078 8.7458 10.7264

0.3 22244 37175 5.6084  3.7175 4.9270 6.5734 5.6084 6.5734 7.9742

0.4 1.8598 3.0206 4.5130  3.0206 3.9779 5.2711 4.5130 5.2164 6.3692

1.5 CPT - 27369  4.2266 6.7412  6.7002 8.0870 10.4502 12.6954 14.0476 16.3364
FOPT 0.1 2.5259 3.7994 5.8304 5.7375 6.7906 8.5182 9.9966 10.8951 12.3770

0.2 2.1206 3.0735 4.4808  4.3220 5.0470 6.1761 6.9575 7.5331 8.4519

0.3 1.7499 24727 3.4936  3.3156 3.8625 4.6768 5.1638 5.5813 6.2328

0.4 1.4612  2.0314 2.8232 2.6483 3.0881 3.7215 4.0739 4.3940 4.8944

HOPT 0.1 2.5297 3.8072 5.8469 5.7571 6.8173 8.5566 10.0559 10.9628 12.4587

0.2 2.1383 3.1049 4.5401 4.3953 5.1342 6.2898 7.1279 7.7167 8.6600

0.3 1.7835 2.5284 3.5911 3.4322 3.9968 4.8466 5.4020 5.8387 6.5234

0.4 1.5084  2.1067 2.9474  2.7926 3.2527 3.9269 4.3512 4.6685 5.2369

2 CPT - 2.4906 3.2254 4.5370  6.4830 7.2020 8.4382 12.4877 13.2076 14.4258
FOPT 0.1 2.3098 2.9528 4.0725 5.5710 6.1264 7.0664 9.8584 10.3440 11.1571

0.2 1.9500  2.4534 3.2912  4.2049 4.5988 5.2465 6.8685 7.1861 7.7090

0.3 1.6128 2.0130 2.6505 3.2252 3.5329 4.0197 5.0989 5.3333 5.7136

0.4 1.3481 1.6763 21826  2.5748 2.8294 3.2188 4.0233 4.2041 4.4994

HOPT 0.1 2.3131 2.9577 4.0804  5.5901 6.1487 7.0939 9.9163 10.4061 11.2259

0.2 1.9657  2.4744 3.3226  4.2759 4.6757 5.3339 7.0366 7.3596 7.8923

0.3 1.6433 2.0516 2.7058 3.3389 3.6530 4.1531 5.3332 5.5751 5.9694

0.4 1.3911 1.7296 22568  2.7154 2.9773 3.3823 4.2945 4.4700 4.8400
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5.1. Natural frequencies of thick plates

The free vibrations of rectangular thick plates are investigated by the proposed above method. Nine fre-
quency factors are obtained for each case based on the three plate theories (CPT, FOPT, HOPT). In all
calculations Poisson’s ratio v is taken as 0.3. For the FOPT solutions the shear correction factor k = 5/6
is adopted. For convenience of notation, the plates are described by a symbolism defining the boundary
conditions at their edges starting from x =0 and x = L,, y =0, y = L, consequently. For example, CCFS
denotes a plate with clamped edges at x=0and x = L,, freeat y =0 and simply supported at y = L,. The
frequencies are expressed in terms of the dimensionless factor A = wL? i (ph /D)l/ The results obtalned by
the three theories are presented in table form for the different conﬁguratlons of the rectangular plates. For
each case of the boundary conditions the following properties are considered: aspect ratios L,/L, = 1.0, 1.5,
2.0 and thickness-width ratios #/L, = 0.1, 0.2, 0.3, 0.4. Note that ratios 4/L, = 0.4 does not really ascribe
to a plate, but we use it for comparison and confirmation of the obtained results. The mode shapes of vibra-
tion are defined by m and n, where these integers indicate the number of half waves in the x- and y-direc-
tions, respectively.

5.1.1. SSSS plates

The natural frequency factors 4 for the SSSS plates calculated by using the three theories are given in
Table 1. The frequencies decrease with an increasing of the thickness—width ratio (h/L,) for constant values
of L,/L,. It is seen that this effect is more pronounced for higher modes. Such behavior is due to the
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influence of rotary inertia and shear deformations. Also, the discrepancy between the CPT results and the
higher theories (HOPT, FOPT) becomes more significant because that CPT does not take into account the
additional flexibility due to the shear stresses. The differences between the results obtained by CPT and
HOPT for the plates with constant thickness are presented in Fig. 2.

From these figures and tables the influence of the aspect ratio L,/L, may be studied too. It may be ob-
served that the frequency factors decrease with an increasing of the aspect ratio L,/L,; moreover the dis-
crepancy between the theories decreases as well. This effect ascribes to more flexibility of the longer plates.

The comparison of the HOPT and FOPT results for the square plate is shown in Fig. 3.

It is seen that the difference between the results of these theories is neglected in the cases of lower thick-
ness—width ratios and exceeds the 1% only in the cases of relatively thick plates (h/L, = 0.3, 0.4) for the
higher modes (two and more half waves).

Note that the values of the frequency factors obtained based on HOPT are greater than the FOPT re-
sults. There are a number of reasons for this effect:

o FOPT needs a shear correction factor to compensate the discrepancy between the assumed constant dis-
tributions of the transverse shear strains and its true parabolic variation. On the other hand HOPT
require no corrections and as a result the disparity between the results appears.

e The assumed HOPT displacements, which are generally smaller than the FOPT displacements, and the
additional high order shear and moment in HOPT lead to higher rigidity of the plate. Thus, the more
flexible FOPT scheme results in the smaller values of the natural frequency.
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Comparisons of the results with existing solutions are given in Table 2. The results based on FOPT for-
mulation are compared with those obtained using Navier method by Reddy and Phan (1985) and Rayleigh—
Ritz method by Liew et al. (1993b); k = 0.82305 is used for these cases. Similar or more precise results are
achieved for every case. The comparison for HOPT results is made with Navier solutions of Reddy and
Phan (1985) and Matsunga (1994), and good agreement has been achieved. The attained accuracy is also
confirmed by comparing our results to the 3-D solution of Liew et al. (1993a).

5.1.2. SSFF plates

The dimensionless values of natural frequency for SSFF plates are compared with those obtained by
Liew et al. (1993b) in Table 3. Also, this table shows the similarity of the present HOPT results with the
3-D solution for SSFF plate of Liew et al. (1993a). Total agreement has been found in all the cases, as again
this is a separable case.

5.1.3. CCCC plates

The dimensionless values of natural frequencies for clamped rectangular plates are given in Table 4.
Comparison with the results for the SSSS plates shows that the frequency factors increase with higher
constraints (from simply supported to fully clamped). In order to study the boundary effect, the difference
between CPT and HOPT solutions are shown for several frequencies in Fig. 4.

Table 5
Frequency factor /4 for CFFF plates

LJ/L, Theory h/L, Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3
1 CPT - 0.3556 22212 6.2186 0.8668 3.1752 7.1760 2.7474 5.5366 9.8979
FOPT 0.1 0.3516 2.0946 5.4882 0.8222 2.9001 6.1961 2.5774 4.8598 8.1909

0.2 0.3418 1.8222 43136 0.7501 2.4526 4.7969 2.2816 3.9235 6.1386
0.3 0.3283 1.5386 3.4051 0.6704 2.0470 3.7651 1.9833 3.1896 4.7613
0.4 0.3126 1.2967 2.7662 0.5944 1.7296 3.0431 1.7284 2.6587 3.8384
HOPT 0.1 0.3516 2.0961 5.4981 0.8226 2.9032 6.2089 2.5786 4.8672 8.2119
0.2 0.3420 1.8307 4.3555 0.7522 2.4668 4.8465 2.2836 3.9512 6.2096
0.3 0.3288 1.5573 3.4757 0.6751 2.0744 3.8456 1.9909 3.2406 4.8735
0.4 0.3136 1.3247 2.8527 0.6025 1.7674 3.1327 1.7368 2.7309 3.9568

1.5 CPT - 0.1580 0.9850 2.7571 0.5266 1.7849 3.6476 2.4730 3.8588 6.0467
FOPT 0.1 0.1570 0.9577 2.5931 0.5039 1.6767 3.3360 2.3551 3.5136 5.3054

0.2 0.1546 0.8907 2.2523 0.4677 1.4976 2.8170 2.1208 2.9804 4.2643

0.3 0.1513 0.8065 1.9102 0.4260 1.3126 2.3494 1.8720 2.5061 3.4487

0.4 0.1473 0.7212 1.6265 0.3838 1.1502 1.9847 1.6447 2.1326 2.8592

HOPT 0.1 0.1570 0.9579 2.5946 0.5041 1.6777 3.3389 2.3555 3.5162 5.3119

0.2 0.1546 0.8921 2.2608 0.4685 1.5019 2.8304 2.1225 2.9908 4.2898

0.3 0.1514 0.8102 1.9287 0.4279 1.3219 2.3759 1.8737 2.5276 3.4983

0.4 0.1475 0.7279 1.6542 0.3871 1.1651 2.0226 1.6479 2.1657 2.9365

2 CPT - 0.0888 0.5530 1.5473 0.3756 1.2266 2.3605 2.3795 3.2010 4.5538
FOPT 0.1 0.0884 0.5438 1.4919 0.3603 1.1651 2.2072 2.2790 2.9689 4.1029

0.2 0.0875 0.5202 1.3630 0.3372 1.0654 1.9449 2.0651 2.5834 3.4217

0.3 0.0862 0.4879 1.2126 0.3101 0.9558 1.6821 1.8312 2.2153 2.8367

0.4 0.0848 0.4520 1.0710 0.2818 0.8525 1.4588 1.6154 1.9110 2.3869

HOPT 0.1 0.0884 0.5438 1.4922 0.3604 1.1656 2.2084 2.2788 2.9703 4.1060

0.2 0.0875 0.5206 1.3655 0.3377 1.0674 1.9504 2.0661 2.5887 3.4342

0.3 0.0863 0.4890 1.2187 0.3111 0.9603 1.6939 1.8314 2.2266 2.8627

0.4 0.0848 0.4541 1.0814 0.2836 0.8602 1.4774 1.6243 1.9255 2.4243
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Fig. 6. Free vibration modes for CFFF square plate: /1p/L, = 0.1: HOPT solution.
Table 6
Comparison of the buckling load factors for SSSS plate (v =0.3)
L./L, Theory h/L, Work Buckling load
P, P.+P, P,
1 FOPT 0.1 Present 3.7865 1.8932 3.7865
Reddy and Phan (1985) 3.7864 - 3.7864
Wang et al. (1994), Kitipornchai et al. (1993) 3.7865 1.8932 -
0.2 Present 3.2637 1.6319 3.2637
Reddy and Phan (1985) 3.2636 - 3.2636
Wang et al. (1994), Kitipornchai et al. (1993) 3.2637 1.6319 -
HOPT 0.1 Present 3.7866 1.8933 3.7866
Reddy and Phan (1985) 3.7865 - 3.7865
0.2 Present 3.2653 1.6327 3.2653
Reddy and Phan (1985) 3.2653 - 3.2653
1.5 FOPT 0.1 Present 4.0250 1.3879 2.0048
Wang et al. (1994), Kitipornchai et al. (1993) 4.0250 1.3879 -
0.2 Present 3.3048 1.2421 1.7941
Wang et al. (1994), Kitipornchai et al. (1993) 3.3048 1.2421 -
2 FOPT 0.1 Present 3.7865 1.2074 1.5093
Wang et al. (1994), Kitipornchai et al. (1993) 3.7865 1.2074 1.5093
0.2 Present 3.2637 1.0955 1.3694
Wang et al. (1994), Kitipornchai et al. (1993) 3.2637 1.0955 1.3694
0.3 Present 2.5726 0.9490 1.1862
Wang et al. (1994), Kitipornchai et al. (1993) - 1.1862
0.4 Present 1.9034 0.7992 0.9991
Wang et al. (1994), Kitipornchai et al. (1993) - - 0.9991
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From Fig. 4, one can find that the effect of the thickness ratio on the difference between the theories in-
creases with the stiffening of the boundary constraints of the plates. Thus, the thickness ratio of fully
clamped plates has the biggest effect on the natural frequencies. Moreover, it is shown that the discrepancy
between the theories increases with the increase in the frequency order. The boundary effect on the differ-
ence between HOPT and FOPT is shown in Fig. 5.

It is seen that the discrepancy between the shear deformation theories is most pronounced for the fully
clamped plates and decreases with decreasing of boundary constrains.

5.1.4. CFFF plates

The dimensionless values of natural frequencies for cantilevered rectangular plates are given in Table 5.
The first 15 mode shapes for a square cantilevered plate with thickness—width ratio /o/L, = 0.1 are shown in
Fig. 6.

5.2. Buckling of thick plates

The stability of rectangular thick plates is studied using the proposed method. Two types of the
buckling load are considered, namely the uniform load applied on parallel edges in one direction and

Table 7
Dimensionless buckling loads and modes for SSSS plates
L,\./L_,, Theory h/Ly Buckling load and mode Theories % difference
P, P.+P, P, P, pP.+P, P,
1 CPT - 4.0000 1,1 2.0000 1,1 4.0000 1,1
FOPT 0.1 3.7865 1,1 1.8932 1,1 3.7865 1,1 HOPT-FOPT 0.00 0.00 0.00
0.2 3.2637 1,1 1.6319 1,1 3.2637 1,1 0.05 0.05 0.05
0.3 2.6533 1,1 1.3266 1,1 2.6533 1,1 0.20 0.20 0.20
0.4 1.9196 1,2 1.0513 1,1 19196 2,1 1.81 0.50 1.81
HOPT 0.1 3.7866 1,1 1.8933 1,1 3.7866 1,1 CPT-HOPT 5.34 5.34 5.34
0.2 3.2653 1,1 1.6327 1,1 3.2653 1,1 18.37 18.37 18.37
0.3 2.6586 1,1 1.3293 1,1 2.6586 1,1 3354  33.53 33.54
04 1.9550 1,2 1.0567 1,1 1.9550 2,1 S51.12 47.17 51.12
1.5 CPT - 4.3403 2,1 1.4444 1,1 2.0864 1,1
FOPT 0.1 4.0250 2,1 1.3879 1,1 2.0048 1,1 HOPT-FOPT 0.01 0.00 0.00
0.2 3.3048 2,1 1.2421 1,1 1.7941 1,1 0.09 0.03 0.03
0.3 2.5457 2,1 1.0570 1,1 1.5267 1,1 0.34 0.12 0.12
04 1.9196 3,1 0.8745 1,1 1.2632 1,1 1.16 0.30 0.30
HOPT 0.1 4.0253 2,1 1.3879 1,1 2.0048 1,1 CPT-HOPT 7.26 391 391
0.2 33077 2,1 1.2424 1,1 1.7946 1,1 23.79 13.99 13.99
0.3 2.5545 2,1 1.0582 1,1 1.5285 1,1 41.15  26.74 26.74
04 1.9421 2,1 0.8772 1,1 1.2670 1,1 55.25 39.27 39.27
2 CPT - 4.0000 2,1 1.2500 1,1 1.5625 1,1
FOPT 0.1 3.7865 2,1 1.2074 1,1 1.5093 1,1 HOPT-FOPT 0.00 0.00 0.00
0.2 32637 2,1 1.0955 1,1 1.3694 1,1 0.05 0.02 0.02
0.3 2.5726 3,1 0.9490 1,1 1.1862 1,1 0.44 0.09 0.09
04 1.9034 3,1 0.7992 1,1 0.9991 1,1 1.02 0.24 0.24
HOPT 0.1 3.7866 2,1 1.2075 1,1 1.5093 1,1 CPT-HOPT 5.34 3.40 3.40
0.2 32654 2,1 1.0958 1,1 1.3697 1,1 18.37 12.34 12.34
0.3 2.5839 3,1 0.9498 1,1 1.1873 1,1 3540  24.01 24.01
04 1.9230 3,1 0.8012 1,1 1.0015 1,1 51.93 3591 3591
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uniform load applied on all edges. The symbolism and parameters of computation are the same as de-
scribed in the part of the free vibration. The buckling load P is expressed as a dimensionless value,
P = NL;/m’D.

5.2.1. SSSS plates

The comparisons of the dimensionless buckling loads for SSSS plates with the solutions of Reddy and
Phan (1985) by HOPT and FOPT, Wang et al. (1994) and Kitipornchai et al. (1993) by FOPT are given in
Table 6. Total agreement is achieved for all the results.

The values of the normalized buckling loads and shapes for simply supported rectangular plates are gi-
ven in Table 7. It is seen that the buckling load decreases with an increase in the thickness—width ratio.
Also, the discrepancy between the shear deformation and classical theories becomes more appreciable.
The first order theory is in fairly good agreement with the higher order theory and the maximum difference
between the values of buckling loads predicted by FOPT and HOPT is less than 2%. Moreover, it can be
observed that the shear stresses not only reduce the values of the buckling load but also cause changes in the
buckling shapes. To examine this point, more detailed computations have been performed for very small
steps of thickness—width ratio, and are summarized in Table §.

From the table it can be observed that the two shear deformation theories result in different shapes
for the same thickness—width ratio (ho/L, = 0.33) in the case of square plate and in the case of rectan-
gular plates FOPT leads to the change of modes for the smaller thickness—width ratios than HOPT (see
Fig. 7).

5.2.2. SSFF plates
Full agreement of the obtained results for SSFF plates with the solution of Kitipornchai et al. (1993) by
Rayleigh-Ritz method and Liew et al. (1996) by Levy method is shown in Table 9.

Table 8

Comparison of buckling shapes for SSSS plates

LJ/L, h/L, Buckling load P, and mode

FOPT HOPT

1 0.31 2.5941 1,1 2.5999 1,1
0.32 2.5356 1,1 2.5419 1,1
0.33 2.4651 2,1 2.4849 1,1
0.34 2.3765 2,1 2.4051 2,1
0.35 2.2917 2,1 2.3214 2,1
0.36 2.2106 2,1 2.2414 2,1
0.37 2.1330 2,1 2.1650 2,1
0.38 2.0587 2,1 2.0919 2,1
0.39 1.9876 2,1 2.0219 2,1

2 0.21 3.2033 2,1 3.2043 2,1
0.22 3.1423 2,1 3.1473 2,1
0.23 3.0808 2,1 3.0903 2,1
0.24 3.0192 2,1 3.0397 2,1
0.25 2.9575 2,1 2.9637 2,1
0.26 2.8959 2,1 3.2186 2,1
0.27 2.8142 3,1 2.8370 2,1
0.28 2.7317 3,1 2.7610 2,1
0.29 2.6511 3,1 2.6350 2,1
0.3 2.5726 3,1 2.5869 3,1
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FOPT, i/L,=0.33 HOPT, h/Ly=0.33

FOPT, I/L,=0.27 HOPT, I/L,=0.27

Fig. 7. Comparison of buckling shapes for SSSS plates, uniformly compressed in x-direction.

5.2.3. CCCC plates

The comparison of buckling load factors for fully clamped rectangular plate with the solutions of Wang
et al. (1994) and Kitipornchai et al. (1993) are given in Table 10. Although the solution of the fully clamped
plates is not separable, the extended Kantorovich method leads to very good approximation of the first
eigenvalue and there are only small differences between the results (up to 0.4%). The dimensionless buckling
loads and shapes for CCCC rectangular plates are represented in Table 11. It is seen that the discrepancy
between the theories increases with an increase in the boundary constraints both in the values of buckling
loads and in the shapes. In order to study the influence of the thickness—width ratio on the stability of the
shear deformable plates, the normalized buckling loads for square plates are shown in Fig. 8 for different
boundary conditions. From the figure, one can find that the effect of the thickness—width ratio increases
with the increase of the boundary constraint of plates.

5.2.4. CFFF plates

The dimensionless values of buckling loads for cantilevered rectangular plates uniformly compressed in
the x-direction and in both directions are given in Table 12. It can be observed that the difference between
the theories is very small; moreover all of them lead to the same buckling shapes. This effect is due to the
higher flexibility of cantilevered plate. Note that for this case Mode 1, 1 symbolizes a quarter of a wave in
the x-direction and wide curve in the y-direction.
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Table 9
Comparison of the buckling loads factors for SSFF plate (v = 0.3, k = 5/6)
L,/L, Theory h/L, Work Buckling load
P, P.+P, P,
1 FOPT 0.05 Present 0.9433 0.9208 1.9469
Liew et al. (1996) 0.9207 1.9464
0.1 Present 0.9222 0.8977 1.8234
Liew et al. (1996) 0.8977 1.8233
Kitipornchai et al. (1993) 0.9222
0.15 Present 0.8908 0.8650 1.6839
Liew et al. (1996) 0.8650 1.6839
0.2 Present 0.8512 0.8248 1.5372
Kitipornchai et al. (1993) 0.8512
1.5 FOPT 0.1 Present 0.4102 0.4026 0.7025
Kitipornchai et al. (1993) 0.4102
0.2 Present 0.3949 0.3869 0.6300
Kitipornchai et al. (1993) 0.3949
2 FOPT 0.1 Present 0.2300 0.2270 0.3674
Liew et al. (1996) 0.2270 0.3674
Kitipornchai et al. (1993) 0.2300
0.2 Present 0.2250 0.2219 0.3354
Liew et al. (1996) 0.2219 0.3354
Kitipornchai et al. (1993) 0.2250
0.3 Present 0.2175 0.2144 0.3020
Liew et al. (1996) 0.2144 0.3020
Table 10
Comparison of the buckling load factors for CCCC plate, FOPT solution (v = 0.3, k = 5/6)
L,/L, ho/L, Work Buckling load
P, P.+P,
1 0.1 Present 8.3231 4.5648
Kitipornchai et al. (1993) 8.2917
Wang et al. (1994) 4.5479
0.2 Present 5.3293 3.2529
Kitipornchai et al. (1993) 5.3156
Wang et al. (1994) 3.2399
1.5 0.1 Present 6.9748 3.6564
Kitipornchai et al. (1993) 6.9608
Wang et al. (1994) 3.6466
0.2 Present 4.7225 2.7460
Kitipornchai et al. (1993) 4.7153
Wang et al. (1994) 2.7367
2 0.1 Present 6.5819 3.5014
Kitipornchai et al. (1993) 6.5736
Wang et al. (1994) 3.4953
0.2 Present 4.5065 2.6524
Kitipornchai et al. (1993) 4.5026

Wang et al. (1994) 2.6458




1248 L. Shufrin, M. Eisenberger | International Journal of Solids and Structures 42 (2005) 1225-1251

Table 11
Dimensionless buckling loads and modes for CCCC plates
L./L, Theory holL,, Buckling load and mode
P, P.+P, P,
1 CPT - 10.0968 1,1 5.3148 1,1 10.0968 1,1
FOPT 0.1 8.3231 1,1 4.5648 1,1 8.3231 1,1
0.2 5.3293 3,1 3.2529 1,1 5.3293 1,3
0.3 3.2222 3,1 2.2183 1,1 3.2222 1,3
0.4 2.0547 3,1 1.5395 1,1 2.0547 L3
HOPT 0.1 8.3513 1,1 4.5667 1,1 8.3513 1,1
0.2 5.4071 2,1 3.2640 1,1 5.4072 1,2
0.3 3.3306 2,1 2.2413 1,1 3.3306 1,2
0.4 2.2033 2,1 1.5727 1,1 2.2033 1,2
1.5 CPT - 8.3609 2,1 4.1278 1,1 5.8309 1,1
FOPT 0.1 6.9748 2,1 3.6564 1,1 5.1349 1,1
0.2 4.7225 4,1 2.7460 1,1 3.7996 1,1
0.3 3.0573 4,1 1.9558 1,1 2.6387 1,3
0.4 2.0189 4,1 1.4009 1,1 1.8208 1,3
HOPT 0.1 6.9934 2,1 3.6575 1,1 5.1389 1,1
0.2 4.7891 4,1 2.7532 1,1 3.8222 1,1
0.3 3.1494 3,1 1.9723 1,1 2.6911 1,3
0.4 2.1285 3,1 1.4257 1,1 1.9066 1,3
2 CPT - 7.8739 3,1 3.9275 1,1 4.8369 1,1
FOPT 0.1 6.5819 3,1 3.5014 1,1 4.3091 1,1
0.2 4.5065 5,1 2.6524 3,1 3.2600 1,1
0.3 2.9783 5,1 1.8983 3,1 2.3244 1,1
0.4 2.0011 5,1 1.3638 3,.1 1.6555 1,3
HOPT 0.1 6.5986 3,1 3.5023 1,1 4.3106 1,1
0.2 4.5848 3,1 2.6590 1,1 3.2696 1,1
0.3 3.0545 4,1 1.9143 3,1 2.3475 1,1
0.4 2.0999 4,1 1.3885 3,1 1.6938 1,1
12.0
10.0 =]
=
g 8o = = cccc
T [a]
T‘E 60 '\\-\\ 1 cCSss
é 4.0 ted ‘\‘\‘\\'_ ® SSSS
2.0
0.0 T T T T
CPT 0.1 0.2 03 0.4

H/Ly
Fig. 8. Dimensionless buckling loads for square plates; HOPT and CPT results.
6. Conclusions

The natural frequencies and buckling loads for rectangular thick plates with different boundary
conditions have been investigated by using the extended Kantorovich method. The two shear deformation
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Table 12
Dimensionless buckling loads and modes for CFFF plates
L./L, Theory ho/L, Buckling load and mode
P, P.+P,
1 CPT - 0.2475 1,1 0.2472 1,1
FOPT 0.1 0.2449 1,1 0.2445 1,1
0.2 0.2378 1,1 0.2375 1,1
0.3 0.2283 1,1 0.2280 1,1
0.4 0.2171 1,1 0.2168 1,1
HOPT 0.1 0.2448 1,1 0.2444 1,1
0.2 0.2378 1,1 0.2375 1,1
0.3 0.2283 1,1 0.2279 1,1
0.4 0.2171 1,1 0.2167 1,1
1.5 CPT - 0.1097 1,1 0.1096 1,1
FOPT 0.1 0.1090 1,1 0.1089 1,1
0.2 0.1072 1,1 0.1071 1,1
0.3 0.1047 1,1 0.1046 1,1
0.4 0.1018 1,1 0.1017 1,1
HOPT 0.1 0.1090 1,1 0.1089 1,1
0.2 0.1071 1,1 0.1071 1,1
0.3 0.1046 1,1 0.1045 1,1
0.4 0.1018 1,1 0.1017 1,1
2 CPT - 0.0616 1,1 0.0616 1,1
FOPT 0.1 0.0614 1,1 0.0613 1,1
0.2 0.0606 1,1 0.0605 1,1
0.3 0.0595 1,1 0.0595 1,1
0.4 0.0584 1,1 0.0583 1,1
HOPT 0.1 0.0616 1,1 0.0616 1,1
0.2 0.0605 1,1 0.0605 1,1
0.3 0.0595 1,1 0.0595 1,1
0.4 0.0584 1,1 0.0583 1,1

theories, in which the effects of both transverse shear stresses and rotary inertia are accounted for, have
been applied to the plate’s analysis. The large number of numerical examples demonstrates the applicability
and versatility of the present method. The advantages of the proposed method are as follows:

e The shape functions are exact solutions for the system of the differential equations of motion and they
are derived automatically. As a result, the solution for stability and free vibrations problem is the highly
accurate solution (depending only on the accuracy of the numerical calculations), as the only approxi-
mation is assuming one term separable solution.

e The exact solution is guaranteed when at least two parallel edges of the plate are simply supported and
the problem is separable (Levy and Navier cases). For other cases, it has been found that the proposed
simplest one terms separation of variables, Egs. (3a)—(3c), leads to highly accurate solutions.

The results of the vibration and stability analysis of thick plates can be summarized as follows:

e The factors of the natural frequencies and the buckling loads for rectangular thick plates are dependent
on the thickness—width, side-aspect ratios and boundary conditions.
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e The natural frequency factors decrease and the discrepancy between results obtained by the three theo-
ries (CPT, HOPT, FOPT) increases with an increasing in the thickness of plate; this effect is more sig-
nificant for higher modes in the cases of lower thickness—width ratios and for all modes in the cases
of thicker plates. Note that difference between the two shear deformation theories is negligible for the
lower modes.

e The normalized natural frequencies and also the discrepancy between the theories decrease with a
decrease in the rigidity of plate, such as greater aspect ratio or less restraining boundary.

e The values of buckling loads factors decrease while the number of half waves in buckling shape increases
with an increase in the thickness—width ratio, and the discrepancy between the shear deformation and
classical theories becomes more appreciable. The first order theory is in fairly good agreement with
the higher order theory, but sometimes there is difference in the buckling shapes.

Acknowledgment

The support for this research to the first author by the Technion Israel Institute of Technology is grate-
fully acknowledged.

References

Cheung, Y.K., Zhou, D., 2000. Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam
functions. Computers & Structures 78 (6), 757-768.

Dawe, D.J., Roufael, O.L., 1982. Buckling of rectangular mindlin plates. Computer & Structures 15 (4), 461-471.

Doong, J.L., 1987. Vibration and stability of an initially stressed thick plate according to a higher order deformation theory. Journal of
Sound and Vibration 113 (3), 425-440.

Eisenberger, M., 1991. Buckling loads for variable cross-section members with variable axial forces. International Journal of Solids
and Structures 27 (2), 135-143.

Eisenberger, M., 1995. Dynamic stiffness matrix for variable cross-section Timoshenko beams. Communications in Numerical
Methods in Engineering 11, 507-513.

Eisenberger, M., 2003. An exact high order beam element. Computers & Structures 81, 147-152.

Eisenberger, M., Alexandrov, A., 2003. Buckling loads of variable thickness thin isotropic plates. Thin-Walled Structures 41 (9), 871—
889.

Hanna, N.F., Leissa, A.W., 1994. A higher order shear deformation theory for the vibration of thick plates. Journal of Sound and
Vibration 170 (4), 545-555.

Kerr, A.D., 1969. An extended Kantorovich method for the solution of eigenvalue problem. International Journal of Solids and
Structures 5, 559-572.

Kitipornchai, S., Xiang, Y., Wang, C.M., Liew, K.M., 1993. Buckling of thick skew plates. International Journal for Numerical
Method in Engineering 36, 1299-1310.

Liew, K.M., Hung, K.C., Lim, M.K., 1993a. A continuum three-dimensional vibration analysis of thick rectangular plates.
International Journal of Solids and Structures 30 (24), 3357-3379.

Liew, K.M., Xiang, Y., Kitipornchai, S., Wang, C.M., 1993b. Vibration of thick skew plates based on mindlin shear deformation plate
theory. Journal of Sound and Vibration 165 (1), 39-69.

Liew, K.M., Xiang, Y., Kitipornchai, S., 1995. Research on thick plate vibration. A literature survey. Journal of Sound and Vibration
180 (1), 163-176.

Liew, K.M., Xiang, Y., Kitipornchai, S., 1996. Analytical buckling solutions for mindlin plates involving free edges. International
Journal of Mechanical Sciences 38 (10), 1127-1138.

Liew, K.M., Wang, C.M., Xiang, Y., Kitipornchai, S., 1998. Vibration of Mindlin Plates. Elsevier, Amsterdam.

Matsunga, H., 1994. Free vibration and stability of thick elastic plates subjected to in-plane forces. Journal of Solids and Structures 31
(22), 3113-3124.

Mizusawa, T., 1993. Vibration of rectangular mindlin plates by the spline strip method. Journal of Sound and Vibration 163 (2), 193—
205.



L Shufirin, M. Eisenberger | International Journal of Solids and Structures 42 (2005) 1225-1251 1251

Reddy, J.N., 1999. Theory and Analysis of Elastic Plates. Taylor & Francis, Philadelphia.

Reddy, J.N., Phan, N.D., 1985. Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear
deformation theory. Journal of Sound and Vibration 98 (2), 157-170.

Roufael, O.L., Dawe, D.J., 1980. Vibration analysis of rectangular mindlin plates by the finite strip method. Computer & Structures
12, 833-842.

Wang, C.M., Xiang, Y., Kitipornchai, S., Liew, K.M., 1994. Buckling solutions for mindlin plates of various shapes. Engineering
Structures 16 (2), 119-127.

Wang, C.M., Reddy, J.N., Lee, K.H., 2000. Shear Deformable Beams and Plates. Relationships with Classical Solution. Elsevier,
Amsterdam.

Yuan, S., Jin, Y., 1998. Computation of elastic buckling loads of rectangular thin plates using the extended Kantorovich method.
Computers & Structures 66 (6), 861-867.

Zenkour, A.M., 2001. Buckling and free vibration of elastic plates using simple and mixed shear deformation theories. ACTA
Mechanica 145, 183-197.



	Stability and vibration of shear deformable plates --  -- first order and higher order analyses
	Introduction
	Analysis of rectangular plates using shear deformation theories
	First order shear deformation plate theory
	Governing equations
	The solution

	Higher order shear deformation plate theory
	Governing equations
	The solution

	Numerical examples
	Natural frequencies of thick plates
	SSSS plates
	SSFF plates
	CCCC plates
	CFFF plates

	Buckling of thick plates
	SSSS plates
	SSFF plates
	CCCC plates
	CFFF plates


	Conclusions
	Acknowledgment
	References


