
International Journal of Solids and Structures 42 (2005) 1225–1251

www.elsevier.com/locate/ijsolstr
Stability and vibration of shear deformable plates––first
order and higher order analyses

I. Shufrin, M. Eisenberger *

Faculty of Civil and Environmental Engineering, Technion Israel Institute of Technology, Rabin Building,

Technion City, Haifa 32000, Israel

Received 13 November 2003; received in revised form 17 June 2004
Available online 25 August 2004
Abstract

This work presents the highly accurate numerical calculation of the natural frequencies and buckling loads for thick
elastic rectangular plates with various combinations of boundary conditions. The Reissener–Mindlin first order shear
deformation plate theory and the higher order shear deformation plate theory of Reddy have been applied to the plate�s
analysis. The governing equations and the boundary conditions are derived using the dynamic version of the principle
of minimum of the total energy. The solution is obtained by the extended Kantorovich method. This approach is com-
bined with the exact element method for the vibration and stability analysis of compressed members, which provides for
the derivation of the exact dynamic stiffness matrix including the effect of in-plane and inertia forces. The large number
of numerical examples demonstrates the applicability and versatility of the present method. The results obtained by
both shear deformation theories are compared with those obtained by the classical thin plate�s theory and with pub-
lished results. Many new results are given too.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Plate elements are commonly used in civil, mechanical, aeronautical and marine structures. The consid-
eration of natural frequencies and buckling loads for rectangular plates are essential to have an efficient and
reliable design.
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The classical Kirchhoff thin plate theory (CPT) is usually used to carry out vibration and stability anal-
ysis of rectangular plates. CPT assumptions are satisfactory for low mode computation of truly thin plate,
but they can lead to inaccuracy in higher modes calculation or when the ratio of thickness to the dimension
of plate is relatively large. This is because the effects of the rotary inertia, which is neglected in most refer-
ences, and the transverse shear deformations, which cannot be considered in the Kirchhoff theory, become
significant in thick plates. Therefore a number of shear deformation plate theories were developed. The sim-
plest one is the first order shear deformation plate theory (FOPT) that is famous as the Reissener–Mindlin
theory. This approach extends the kinematic assumptions of the CPT by releasing the restriction on the
angle of shearing deformations (Reddy, 1999; Wang et al., 2000). The transverse shear strain is assumed
to be constant through the thickness of the plate, and a shear correction factor is introduced to correct
the discrepancy between the actual transverse shear stress distribution and those computed using the kin-
ematic relations of this theory. The shear correction factors depend not only on geometric parameters, but
also on the loading and boundary conditions of the plate. The application of the Reissner–Mindlin theory
to plate problem has attracted the attention of many researchers. Various methods have been applied to
compute natural frequencies and buckling loads for thick rectangular plates with different boundary con-
dition, namely the analytical Navier (Reddy and Phan, 1985) and Levy (Liew et al., 1996; Zenkour, 2001)
solutions, the Rayleigh–Ritz method (Liew et al., 1995, 1998; Wang et al., 1994; Kitipornchai et al., 1993;
Cheung and Zhou, 2000), the finite strip method (Dawe and Roufael, 1982; Roufael and Dawe, 1980;
Mizusawa, 1993), the finite difference and finite elements methods etc.

Higher order shear deformation plate theories (HOPT) use higher order polynomials in the expansion of
the displacement components through the thickness of the plate. According to the assumptions of HOPT
the restriction on warping of the cross section is relaxed, and allows variation in the thickness direction
of the plate. Unlike the FOPT, the HOPT requires no shear correction factors. Applications of HOPT
for problems of buckling and vibration of thick plates have been discussed by a number of authors. Reddy
and Phan (1985) have used the Navier solution in order to analyze the free vibration and buckling of iso-
tropic, orthotropic and laminated rectangular plates with simply supported edge condition according to the
HOPT of Reddy (1999). Hanna and Leissa (1994) have developed a completely higher order shear defor-
mation plate theory, including energy functional, equation of motion and boundary condition. They have
used Rayleigh–Ritz method for free vibration solution of fully free rectangular plate. Doong (1987) have
used the average stress method in order to develop high order plate theory in which an arbitrary initial
stress state is included. The governing equations are obtained using a perturbation technique. He has pre-
sented the Navier solution for natural frequencies and buckling loads for simply supported rectangular
plate. Matsunga (1994) have derived a HOPT through Hamilton�s principle by using the method of power
series expansion of displacement components. Stability and free vibration analysis have been performed for
simply supported plate by Navier method. A broad literature survey on the vibration analysis of shear
deformable plates also have been done by Liew et al. (1995).

This work presents the calculation of the natural frequencies and buckling loads for thick elastic
rectangular plates with various boundary conditions and includes the effects of shear deformation and ro-
tary inertia. The dynamic version of the principle of minimum of total energy is adopted in derivation of the
governing equations and the boundary conditions for Reissener–Mindlin FOPT and HOPT of Reddy. The
solution is based on the extended Kantorovich method (Kerr, 1969; Yuan and Jin, 1998; Eisenberger and
Alexandrov, 2003). According to this approach solution is assumed to be separable in the directions of
plate�s edges. Then, the solution in one direction, x for example, is specified a priory, and the solution in
the y-direction is determinated by solving an ordinary differential equation derived from the associated var-
iational process with appropriate boundary conditions. In the next step, the obtained solution is used as the
known function, while the solution in the second direction is re-determinated by another Kantorovich solu-
tion process. These iterations are repeated until the result converges to a desired degree. In the case that two
parallel edges are simply supported this procedure yields exact results, as it will be shown. In the solution in
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one direction, the exact element method for the vibration and stability analysis of compressed members is
used (Eisenberger, 1991, 1995). This approach provides for the derivation of the dynamic stiffness matrix
including the effect of in-plane and inertia forces. The desired crucial parameter (buckling load or natural
frequency) is found as a value that leads to the singularity of the stiffness matrix. Free vibration and sta-
bility of rectangular thick plates are analyzed by varying the plate-aspect ratios and thickness–width ratios.
The results obtained by both shear deformation theories (FOPT and HOPT) are compared with those from
the classical plate theory (CPT) and with published results. Many new results are given too.
2. Analysis of rectangular plates using shear deformation theories

Consider an isotropic rectangular plate of plan-form Lx and Ly with constant thickness h. The plate has
arbitrary boundary condition and is assumed to be subjected to in-plane load for buckling analysis and to
inertia forces for vibration analysis. The coordinate system is taken such that the x–y plane coincides with
the middle plane of the plate and the origin of the coordinate system is taken at the lower left corner of the
plate (see Fig. 1). Note that the in-plane shear forces are not included. As Yuan and Jin (1998) showed,
the simplest one term separation of variables, which is used in the current study, does not enable to include
in-plane shear force, as these cancel out in the derivation.
3. First order shear deformation plate theory

3.1. Governing equations

According to Reissener–Mindlin theory for harmonic motion the displacement field is taken as
�uðx; y; z; tÞ ¼ zwxðx; y; tÞ ¼ zwxðx; yÞeixt ð1aÞ

�vðx; y; z; tÞ ¼ zwyðx; y; tÞ ¼ zwyðx; yÞeixt ð1bÞ

�wðx; y; z; tÞ ¼ �w0ðx; y; tÞ ¼ w0ðx; yÞeixt ð1cÞ
x
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Fig. 1. Geometry and the coordinate system of rectangular plates.
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where ð�u;�v; �wÞ are the displacement components along the (x,y,z) coordinate directions, respectively; �w0 is
the transverse deflection of a point on the middle plane, wx and wy denote the rotations around to the
x- and y-axes, correspondingly, and x denotes the angular natural frequency.

The out of plane energy functional for rectangular plate P, associated with the above displacements, can
be written in terms of strain energy of bending, kinetic energy of vibration and potential energy of in-plane
loads (see Fig. 1) in following form (Reddy, 1999):
P¼1
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In which, the shear modulus G is related to Young�s modulus E and Poisson�s ratio m by G = E/2(1 + m),
D = Eh3/12(1 � m2) is the bending rigidity of the plate, q is the mass density of the plate�s material, and k is
the shear correction factor to compensate for the discrepancy between the parabolic distribution of trans-
verse shear stresses and the constant state of shear stresses resulting from the kinematic assumptions of this
theory.

According to the classical Kantorovich method for 2-D problem we assume that the solution is separa-
ble, and can be written as
wðx; yÞ ¼ wðxÞW ðyÞ ð3aÞ

wxðx; yÞ ¼ f ðxÞF ðyÞ ð3bÞ

wyðx; yÞ ¼ /ðxÞUðyÞ ð3cÞ
Substitution of the assumed solution Eqs. (3a)–(3c) and its derivatives into the energy functional equa-
tion (2) yields
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2

Z Lx

0

Z Ly

0

f 2
;xF

2 þ /2U2
;y þ 2f ;x/mFU;y þ f 2 1

2
ð1� mÞF 2

;y þ 2f/;x
1

2
ð1� mÞF ;yU þ /2

;x

1

2
ð1� mÞU2

� �
dxdy

þ kGh
2

Z Lx

0

Z Ly

0

ðf 2F 2 þ 2fw;xFW þ w2
;xW

2 þ /2U2 þ /wUW ;y þ w2W 2
;yÞdxdy

� D
2

Z Lx

0

Z Ly

0

ðX2h2f 2F 2 þ X2h2/2U2 þ X2w2W 2 þ Pxw2
;xW

2 þ Pyw2W 2
;yÞdxdy ð4Þ
where X2 = x2qh/D and Pi = Ni/D. In order to obtain an equation involving only one function, for exam-
ple w(x) we assume functionW(y) as known, and after integration over the direction y the functional takes
the form
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where the coefficients S1–S16 are defined as
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According to the dynamic version of the principle of virtual displacement, i.e., Hamilton�s principle the
first variation of the functional should be equal to zero. Thus after integration by parts we get
dP ¼
Z Lx

0

ðððPxS15 � S9Þw;xx þ ðS12 � X2S15 � PyS16Þw� S8f;x þ S11/Þdw

þ ð�S1f;xx þ ðS4 þ S7 � X2S13Þf þ ðS5 � S3Þ/;x þ S8w;xÞdf þ ð�S6/;xx þ ðS2 þ S10 � X2S14Þ/

þ ðS3 � S5Þf;x þ S11wÞd/Þdxþ ððS9 � PxS15Þw;x þ S8f ÞdwjLx0 þ ðS1f;x þ S3/Þdf jLx0

þ ðS6/;x þ S5f Þd/jLx0 ¼ 0 ð7Þ
Each term in the above equation have to be equal to zero. From the first integral we obtain the system of
differential equations in the following form:
For dw
ðPxS15 � S9Þw;xx þ ðS12 � X2S15 � PyS16Þw� S8f;x þ S11/ ¼ 0 ð8Þ
For df
�S1f;xx þ ðS4 þ S7 � X2S13Þf þ ðS5 � S3Þ/;x þ S8w;x ¼ 0 ð9Þ
For d/
�S6/;xx þ ðS2 þ S10 � X2S14Þ/ þ ðS3 � S5Þf;x þ S11w ¼ 0 ð10Þ
The remaining expressions are the natural boundary conditions:
df : Mb ¼ ðS1f;x þ S3/ÞjLx0 ð11aÞ

d/: M t ¼ ðS5df þ S6d/;xÞj
Lx
0 ð11bÞ

d/: M t ¼ ðS5f þ S6/;xÞj
Lx
0 ð11cÞ
where Q the shear force, Mb the bending moment and Mt twisting moment on the corresponding edge of
the plate.
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3.2. The solution

For the solution, we use the following dimensionless coordinates: n = x/Lx and g = y/Ly. Now we
assume the solution of the system Eqs. (8)–(10) as three infinite power series of the following form:
w ¼
X1
i¼0

win
i ð12aÞ

f ¼
X1
i¼0

fin
i ð12bÞ

/ ¼
X1
i¼0

/in
i ð12cÞ
For the solution we have to find the appropriate coefficients of the polynomials in Eqs. (12a)–(12c). Cal-
culating all the derivatives and substituting them back into Eqs. (8)–(10), we obtain recurrence formulas for
calculation wi+2, fi+2, /i+2 in the series Eqs. (12a)–(12c) as a function of the first two terms of the each series
(Eisenberger, 1991, 1995;Eisenberger and Alexandrov, 2003):
wiþ2 ¼
ðS15 � X2S15 � S16PyÞL2

xwi � S8Lxðiþ 1Þfiþ1 þ S11L2
x/i

ðS9 � PxS15Þðiþ 1Þðiþ 2Þ ð13aÞ
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2ÞL2
xfi þ S8Lxðiþ 1Þwiþ1 þ ðS5 � S3ÞLxðiþ 1Þ/iþ1
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2ÞL2
x/i þ S11L2

xwi þ ðS3 � S5ÞLxðiþ 1Þfiþ1
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Then the first two terms of each series should be found using the boundary condition (Eisenberger and
Alexandrov, 2003).

Based on the above technique and using the finite element approach, the six basic shapes can be found
with the following boundary conditions:
wð0Þ ¼ 1; wð1Þ ¼ f ð0Þ ¼ f ð1Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð14aÞ

wð1Þ ¼ 1; wð0Þ ¼ f ð0Þ ¼ f ð1Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð14bÞ

f ð0Þ ¼ 1; wð0Þ ¼ wð1Þ ¼ f ð1Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð14cÞ

f ð1Þ ¼ 1; wð0Þ ¼ wð1Þ ¼ f ð0Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð14dÞ

/ð0Þ ¼ 1; wð0Þ ¼ wð1Þ ¼ f ð0Þ ¼ f ð1Þ ¼ /ð1Þ ¼ 0 ð14eÞ

/ð1Þ ¼ 1; wð0Þ ¼ wð1Þ ¼ f ð0Þ ¼ f ð1Þ ¼ /ð0Þ ¼ 0 ð14fÞ
The calculated shapes are the ‘‘exact’’ solution for the system of differential equations. The word ‘‘exact’’
means ‘‘as exact as one can get on a digital computer’’. This is so since the calculation of the series is
stopped according to a preset criterion so that the values of last six terms are less than an arbitrary small
criterion (in the present work the criterion is taken as 10�20).
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The terms of the stiffness matrix are defined as the holding actions at both ends of the strip, due to unit
translation or rotations, at each of the six degrees of freedom, one at the time. Then according to condition
Eqs. (11a)–(11c), with transformations to the non-dimensional coordinates we have for the columns of the
first order stiffness matrix SF(i, j) the following expressions:
SFð1; iÞ ¼ S8f ðiÞð0Þ þ S9
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where w(i), f(i), /(i) are the shapes that are calculated with the boundary conditions of Eqs. (14a)–(14f)).
Then the natural frequency for the plate can be found as the frequency x that causes the determinant of

the corresponding dynamic stiffness matrix to become zero. Also the buckling loads are the in-plane loads,
that lead to singularity of the appropriate matrix, with the frequency x = 0. This is done using a program
that converges on the values that satisfy this criterion.

Having the stiffness matrix for the critical factor we can find the functions of the general displacements
for this state by the following procedure: The vector of the nodal displacements is an eigenvector of the
stiffness matrix, which corresponds to the desired parameter. Thus, the functions of general displacements
are calculated by multiplying the basic shapes functions by the nodal displacement, which is appropriate to
each of them.
4. Higher order shear deformation plate theory

4.1. Governing equations

The displacements based on the third order shear deformation plate theory of Reddy (1999) are taken as
�uðx; y; z; tÞ ¼ zwx �
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wy þ

ow0

oy
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�wðx; y; z; tÞ ¼ w eixt ð16cÞ
0
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The strain energy of the bending of plate in this case is (Reddy, 1999)
U ¼ 1
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After utilization of the Kantorovich solution technique and integration over the y-direction, we obtain
U ¼ D
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The assumed free vibration is harmonic and based on the displacement field (Eqs. (16a)–(16c)) we get the
expression of kinetic energy in the form
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After separation and integration over y-direction it takes the following form:
T ¼ X2 D
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The potential energy of the in-plane forces after substituting of the assumed solution and the integration

over the y-direction takes the following form:
V ¼ D
2

Z Lx

0

ð�S30Pxw2
;x þ S31Pyw2Þdx ð23Þ
where S-coefficients are defined as
S30 ¼
Z Ly

0

W 2 dy; S31 ¼ �
Z Ly

0

W 2
;y dy ð24Þ
According to Hamilton�s principle the first variation of the functional should be equal to zero
dP ¼ dU � dT þ dV ¼ 0 ð25Þ

After integrating the expression of virtual energy by parts and collecting the coefficients of dw, df and d/

we obtain the equations of motion for the strip element:
For dw
S3w;xxx þ ð2S10 � S14 � S19 þ S28X
2 þ S30PxÞw;xx þ ðS4 þ S22 þ ðS27 þ S29ÞX2 þ S31PyÞw

� S5f;xxx � ðS8 � S15 þ S18 � S25X
2Þf;x þ ðS9 þ S16Þ/;xx þ ðS6 þ S21 þ S26X

2Þ/Þ ¼ 0 ð26Þ

For df
ðS5w;xxx þ ðS8 � S15 þ S18 � S25X
2Þw;x � S1f;xx þ ðS11 þ S17 þ S23X

2Þf þ ðS13 � S7Þ/;xÞ ¼ 0 ð27Þ
For d/
ððS9 þ S16Þw;xx þ ðS6 þ S21 þ S26X
2Þwþ ðS7 � S13Þf;x � S12/;xx þ ðS2 þ S20 þ S24X

2Þ/Þ ¼ 0 ð28Þ
The natural boundary conditions (action at the ends of strip elements) are obtained as
dw: Q ¼ � S3w;xxx þ ðS10 � S14 � S19 þ S28X
2 þ S31PyÞw;x � S5f;xx þ ðS15 � S18 þ S25X

2Þf



þðS9 þ S16Þ/;x

���Lx
0

ð29aÞ

dw;x: R ¼ ðS3w;xx þ S10w� S5f;x þ S9/ÞjLx0 ð29bÞ
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df : Mb ¼ ð�S5w;xx � S8wþ S1f;x þ S7/ÞjLx0 ð29cÞ

d/: M t ¼ ðS12/;x þ S13f � S16w;xÞjLx0 ð29dÞ
4.2. The solution

We again use the dimensionless variables n and g and the assumption of polynomial variation of all the
functions over the strip, Eqs. (12a)–(12c). Now by substitution the assumed solutions, Eqs. (12a)–(12c) into
the field equation, Eqs. (26)–(28) we get recurrence formulas for the polynomial terms. All polynomial coef-
ficients dependent on the first four terms of w and the first two of f and /. In contrast with the FOPT anal-
ysis, when unknown polynomial terms could be found one after another, in the current HOPT formulation
the follow algorithm should be used to calculate them.

Firstly, the f2 term is calculated for i = 0 from the following expressionf:
f2 ¼
1

2S1Lx
ð6S5w3 þ L2

xðS8 � S15 þ S18 � S25X
2Þw1 þ L3

xðS11 þ S17 þ S23X
2Þf0 þ ðS13 � S7ÞL2

x/1Þ ð30Þ
Then for i = 0, . . . ,1, the /i+2 terms are determinated by
/iþ2 ¼
1

S12ðiþ 2Þðiþ 1Þ ððS9 þ S16Þwiþ2ðiþ 2Þðiþ 1Þ þ L2
xðS6 þ S21 þ S26X

2Þwi

þ LxðS7 � S13Þfiþ1ðiþ 1Þ þ L2
xðS2 þ S20 þ S24X

2Þ/iÞ ð31Þ
Now the terms wi+4 and fi+3 can be found from the system of two equations:
AðiÞ
1;1wiþ4 þ AðiÞ

1;2fiþ3 ¼ BðiÞ
1

Aðiþ1Þ
2;1 wiþ4 þ Aðiþ1Þ

2;2 fiþ3 ¼ BðiÞ
2

(
ð32Þ
where the terms A and B are defined by following expressions:
AðiÞ
1;1 ¼ �S3ðiþ 4Þðiþ 3Þðiþ 2Þðiþ 1Þ

AðiÞ
1;2 ¼ S5Lxðiþ 3Þðiþ 2Þðiþ 1Þ

AðiÞ
2;1 ¼ �S5ðiþ 3Þðiþ 2Þðiþ 1Þ

AðiÞ
2;2 ¼ S1Lxðiþ 2Þðiþ 1Þ

ð33aÞ

BðiÞ
1 ¼ S3wiþ4ðiþ 4Þðiþ 3Þðiþ 2Þðiþ 1Þ þ L2

xð2S10 � S14 � S19 þ S28X
2 þ S30PxÞwiþ2ðiþ 2Þðiþ 1Þ

þ L4
xðS4 þ S22 þ ðS27 þ S29ÞX2 þ S31PyÞwi þ L3

xð�S8 þ S15 � S18 þ S25X
2Þfiþ1ðiþ 1Þ

þ L2
xðS9 þ S16Þ/iþ2ðiþ 2Þðiþ 1Þ þ L4

xðS6 þ S21 þ S26X
2Þ/i ð33bÞ

BðiÞ
2 ¼ S5wiþ3ðiþ 3Þðiþ 2Þðiþ 1Þ þ L2

xðS8 � S15 þ S18 � S25X
2Þwiþ1ðiþ 1Þ þ L3

xðS11 þ S17 þ S23X
2Þfi

þ L2
xðS13 � S7Þ/iþ1ðiþ 1Þ ð33cÞ
Then the first four terms of w and the first two of f and / should be found based on boundary conditions.
For the current formulation the degrees of freedom are lateral displacement, its derivative and two rota-
tions around the x- and y-axes at both the ends of the strip element. The terms of the stiffness matrix
are the holding actions at the end of the strip element due to unit displacement in the desired direction when
all other degrees of freedom are restrained. Then for the current formulation the holding end actions are



I. Shufrin, M. Eisenberger / International Journal of Solids and Structures 42 (2005) 1225–1251 1235
shear force, twisting moment, ordinary and high order bending moments. Thus, according to conditions of
Eqs. (29a)–(29d), with transformation to dimensionless coordinates we have the terms of the higher order
stiffness matrix SH(i, j) as follows:
Table
Freque

Lx/Ly

1

1.5

2

SHð1; iÞ ¼ � 1

L3
xS3

wðiÞ
;nnnð0Þ �

1

Lx
ðS10 � S14 � S19 þ S28X

2 þ S30PxÞwðiÞ
;n ð0Þ þ

1

L2
x

S5f
ðiÞ
;nnð0Þ

� ðS15 � S18 þ S25X
2Þf ðiÞð0Þ � 1

Lx
ðS9 þ S16Þ/ðiÞ

;n ð0Þ ð34aÞ

SHð2; iÞ ¼
1

L2
x

S3w
ðiÞ
;nnð0Þ �

1

Lx
S5f

ðiÞ
;n ð0Þ þ S9/

ðiÞð0Þ þ S10wðiÞð0Þ ð34bÞ

SHð3; iÞ ¼
1

Lx
S1f

ðiÞ
;n ð0Þ � 1

L2
x

S5w
ðiÞ
;nnð0Þ þ S7/

ðiÞð0Þ � S8wðiÞð0Þ ð34cÞ

SHð4; iÞ ¼
1

Lx
S12/

ðiÞ
;n ð0Þ þ S13f ðiÞð0Þ � 1

Lx
S16w

ðiÞ
;n ð34dÞ
1
ncy factor k for SSSS

Theory h/Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

CPT – 2.0000 5.0000 10.0000 5.0000 8.0000 13.0000 10.0000 13.0000 18.0000
FOPT 0.1 1.9317 4.6084 8.6162 4.6084 7.0716 10.8093 8.6162 10.8093 14.1908

0.2 1.7679 3.8656 6.6006 3.8656 5.5879 7.9737 6.6006 7.9737 9.9802
0.3 1.5768 3.1962 5.1426 3.1962 4.4356 6.0836 5.1426 6.0836 7.4342
0.4 1.3970 2.6771 4.1505 2.6771 3.6199 4.8521 4.1505 4.8521 5.8537

HOPT 0.1 1.9317 4.6088 8.6188 4.6088 7.0732 10.8145 8.6188 10.8145 14.2022
0.2 1.7683 3.8693 6.6176 3.8693 5.5984 8.0030 6.6176 8.0030 10.0362
0.3 1.5780 3.2059 5.1807 3.2059 4.4605 6.1456 5.1807 6.1456 7.5452
0.4 1.3996 2.6942 4.2116 2.6942 3.6609 4.9482 4.2116 4.9482 6.0192

CPT – 1.4444 2.7778 5.0000 4.4444 5.7778 8.0000 9.4444 10.7778 13.0000
FOPT 0.1 1.4082 2.6491 4.6084 4.1303 5.2656 7.0716 8.1942 9.1982 10.8093

0.2 1.3164 2.3612 3.8656 3.5117 4.3405 5.5879 6.3282 6.9717 7.9737
0.3 1.2010 2.0526 3.1962 2.9336 3.5439 4.4356 4.9536 5.3986 6.0836
0.4 1.0851 1.7818 2.6771 2.4742 2.9436 3.6199 4.0090 4.3419 4.8521

HOPT 0.1 1.4082 2.6491 4.6088 4.1306 5.2662 7.0732 8.1965 9.2015 10.8145
0.2 1.3166 2.3620 3.8693 3.5145 4.3457 5.5984 6.3433 6.9917 8.0030
0.3 1.2016 2.0553 3.2059 2.9412 3.5569 4.4605 4.9879 5.4425 6.1456
0.4 1.0864 1.7871 2.6942 2.4879 2.9662 3.6609 4.0643 4.4115 4.9482

CPT – 1.2500 2.0000 3.2500 4.2500 5.0000 6.2500 9.2500 10.0000 11.2500
FOPT 0.1 1.2227 1.9317 3.0762 3.9611 4.6084 5.6580 8.0453 8.6162 9.5468

0.2 1.1521 1.7679 2.7023 3.3847 3.8656 4.6183 6.2313 6.6006 7.1916
0.3 1.0608 1.5768 2.3188 2.8385 3.1962 3.7449 4.8862 5.1426 5.5497
0.4 0.9664 1.3970 1.9934 2.4004 2.6771 3.0969 3.9585 4.1505 4.4546

HOPT 0.1 1.2227 1.9317 3.0763 3.9614 4.6088 5.6588 8.0475 8.6188 9.5505
0.2 1.1522 1.7683 2.7036 3.3872 3.8693 4.6244 6.2457 6.6176 7.2134
0.3 1.0612 1.5780 2.3227 2.8454 3.2059 3.7602 4.9191 5.1807 5.5972
0.4 0.9673 1.3996 2.0008 2.4130 2.6942 3.1230 4.0118 4.2116 4.5302
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Sð5; iÞ ¼ � 1

L3
x

S3w
ðiÞ
;nnnð1Þ �

1

Lx
ðS10 � S14 � S19 þ S28X

2 þ S30PxÞwðiÞ
;n ð1Þ

þ 1

L2
x

S5f
ðiÞ
;nnð1Þ � ðS15 � S18 þ S25X

2Þf ðiÞð1Þ � 1

Lx
ðS9 þ S16Þ/ðiÞ

;n ð1Þ ð34eÞ

Sð6; iÞ ¼ 1

L2
x

S3w
ðiÞ
;nnð1Þ �

1

Lx
S5f

ðiÞ
;n ð1Þ þ S9/

ðiÞð1Þ þ S10wðiÞð1Þ ð34fÞ

SHð7; iÞ ¼
1

Lx
S1f

ðiÞ
;n ð1Þ � 1

L2
x

S5w
ðiÞ
;nnð1Þ þ S7/

ðiÞð1Þ � S8wðiÞð1Þ ð34gÞ

SHð8; iÞ ¼
1

Lx
S12/

ðiÞ
;n ð1Þ þ S13f ðiÞð1Þ � 1

Lx
S16w

ðiÞ
;n ð34hÞ
Fig. 3. Comparison of normalized frequency for SSSS plates: % difference FOPT to HOPT, Lx/Ly = 1.0.

Fig. 2. Comparison of normalized frequency for SSSS plates: % difference CPT to HOPT.
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where w(i), f(i) and /(i) are the shapes calculated as the solution of the system of the differential equations of
motion, Eqs. (26)–(28) according to the above recurrence technique with the following boundary
conditions:
Table
Compa

Lx/Ly

1

1.5
wð0Þ ¼ 1; wð1Þ ¼ w;nð0Þ ¼ w;nð1Þ ¼ f ð0Þ ¼ f ð1Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð35aÞ

wð1Þ ¼ 1; wð0Þ ¼ w;nð0Þ ¼ w;nð1Þ ¼ f ð0Þ ¼ f ð1Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð35bÞ

w;nð0Þ ¼ Lx; wð0Þ ¼ wð1Þ ¼ w;nð1Þ ¼ f ð1Þ ¼ f ð0Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð35cÞ
2
rison of the frequency factors k for SSSS plates (k = 0.82305)

Theory Work h/Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

FOPT Present 0.1 1.9311 4.6050 8.6054 4.6050 7.0642 10.7932 8.6054 10.7932 14.1647
Reddy and Phan
(1985)

1.9311 4.6077 8.6153 4.6077 7.0724 10.8101 8.6153 10.8101 14.1906

Liew et al.
(1993b)

1.9311 4.6050 8.6055 4.6050 7.0642 10.7932 8.6055 10.7932 –

Present 0.2 1.7661 3.858 6.582 3.858 5.5737 7.9485 6.582 7.9485 9.9444
Liew et al.
(1993b)

1.7661 3.858 6.582 3.858 5.5737 7.9485 6.582 7.9485 –

HOPT Present 0.1 1.9317 4.6088 8.6188 4.6088 7.0732 10.8145 8.6188 10.8145 14.2022
Reddy and Phan
(1985)

1.9332 4.6139 8.6339 4.6139 7.0828 10.8412 8.6339 10.8412 14.2487

Matsunga
(1994)

1.9353 4.6222 8.6609 4.6222 7.1036 10.8786 8.6609 10.8786 14.3048

3-D solution Liew et al.
(1993a)

1.9342 4.6222 8.6617 4.6222 7.103 10.879 8.6617 10.879

HOPT Present 0.2 1.7683 3.8693 6.6176 3.8693 5.5984 8.003 6.6176 8.003 10.0362
Matsunga
(1994)

1.7759 3.8991 6.6867 3.8991 5.6527 8.0925 6.6867 8.0925 10.1524

3-D solution Liew et al.
(1993a)

1.7758 3.8991 6.6868 3.8991 5.6524 – 6.6868 – –

FOPT Present 0.1 1.4079 2.6479 4.605 4.1275 5.2613 7.06422 8.1845 9.1862 10.7932
Liew et al.
(1993b)

1.4079 2.6479 4.605 4.1276 5.2613 7.0642 8.1845 – –

Present 0.2 1.3153 2.358 3.858 3.5053 4.3313 5.5737 6.3108 6.9514 7.9485
Liew et al.
(1993b)

1.3153 2.358 3.8581 3.5053 4.3313 5.5734 6.3108 – –

HOPT Present 0.1 1.4082 2.6491 4.6088 4.1306 5.2662 7.0732 8.1965 9.2015 10.8145
3-D solution Liew et al.

(1993a)
1.4096 2.6538 4.1415 5.2834

HOPT Present 0.2 1.3166 2.362 3.8693 3.5145 4.3457 5.5984 6.3432 6.9917 8.003
3-D solution Liew et al.

(1993a)
1.3209 2.3747 3.5398 4.3489

HOPT Present 0.3 1.2016 2.0553 3.2059 2.9412 3.5569 4.4605 4.9879 5.4425 6.1456
3-D solution Liew et al.

(1993a)
1.2088 2.0731 2.9719 3.5967

HOPT Present 0.4 1.0864 1.7871 2.6942 2.4879 2.9662 3.6609 4.0643 4.4115 4.9482
3-D solution Liew et al.

(1993a)
1.0954 1.8064 2.5168 2.9998
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Lx/Ly

1

2
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w;nð1Þ ¼ Lx; wð0Þ ¼ wð1Þ ¼ w;nð0Þ ¼ f ð1Þ ¼ f ð0Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð35dÞ

f ð0Þ ¼ 1; wð0Þ ¼ wð1Þ ¼ w;nð0Þ ¼ w;nð1Þ ¼ f ð1Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð35eÞ

f ð1Þ ¼ 1; wð0Þ ¼ wð1Þ ¼ w;nð0Þ ¼ w;nð1Þ ¼ f ð0Þ ¼ /ð0Þ ¼ /ð1Þ ¼ 0 ð35fÞ

/ð0Þ ¼ 1; wð0Þ ¼ wð1Þ ¼ w;nð0Þ ¼ w;nð1Þ ¼ f ð0Þ ¼ f ð1Þ ¼ /ð1Þ ¼ 0 ð35gÞ

/ð1Þ ¼ 1; wð0Þ ¼ wð1Þ ¼ w;nð0Þ ¼ w;nð1Þ ¼ f ð0Þ ¼ f ð1Þ ¼ /ð0Þ ¼ 0 ð35hÞ

Now the desired critical factor (buckling load or natural frequency) can be found as the value that causes

the singularity of the appropriate stiffness matrix. And corresponding to this factor the general displace-
ments can be determinated by the way described for FOPT analysis.
5. Numerical examples

In order to obtain a high precision solution for stability and vibration problems of thick rectangular
plates and simultaneously demonstrate the applicability and versatility of the present method, numerical
calculations have been performed for a large number of plates with different length–width ratios, thick-
ness–width ratios, and various combinations of boundary conditions.
3
arison of the frequency factors k for SSFF plates (k = 0.82305)

Theory Work h/Ly Modes

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3

FOPT Present 0.1 0.9564 3.6815 7.7557 1.5587 4.3327 8.3396 3.4289 6.2908
Liew et al. (1993b) 0.9564 3.6815 7.7558 1.5588 4.3329 – 3.4290 6.2910
Present 0.2 0.9096 3.1630 6.0244 1.4267 3.6368 6.3930 2.9482 5.0107
Liew et al. (1993b) 0.9096 3.1630 6.0245 1.4267 3.6369 – 2.9482 5.0107

HOPT Present 0.1 0.9566 3.6841 7.7668 1.5595 4.3366 8.3530 3.4315 6.2990
3-D solution Liew et al. (1993a) 0.9571 3.6919 1.5603 4.3454 3.4361
HOPT Present 0.2 0.9103 3.1706 6.0540 1.4287 3.6475 6.4271 2.9547 5.0311
3-D solution Liew et al. (1993a) 0.9120 3.1888 1.4309 3.6651 2.9650
HOPT Present 0.3 0.8493 2.6792 4.7826 1.2824 3.0323 5.0428 2.5050 4.0342
3-D solution Liew et al. (1993a) 0.8523 2.7010 1.2855 3.0500 2.5168
HOPT Present 0.4 0.7842 2.2821 3.9077 1.1436 2.5549 4.1046 2.1368 3.3130
3-D solution Liew et al. (1993a) 0.7883 2.3019 1.1466 2.5665 2.1469

FOPT Present 0.1 0.2395 0.9564 2.1210 0.6701 1.5587 2.7748 2.5304 3.4289
Liew et al. (1993b) 0.2395 0.9564 2.1210 0.6701 1.5588 2.7550 2.5304 3.4290
Present 0.2 0.2362 0.9096 1.9216 0.6310 1.4267 2.4388 2.2614 2.9482
Liew et al. (1993b) 0.2362 0.9096 1.9216 0.6310 1.4267 2.4388 2.2614 2.9482

HOPT Present 0.1 0.2395 0.9566 2.1218 0.6704 1.5595 2.7767 2.5315 3.4315
3-D solution Liew et al. (1993a) 0.2396 0.9571 0.6704 1.5603 2.5338
HOPT Present 0.2 0.2362 0.9103 1.9244 0.6317 1.4287 2.4438 2.2644 2.9547
3-D solution Liew et al. (1993a) 0.2363 0.9120 0.6319 1.4309 2.2705
HOPT Present 0.3 0.2313 0.8493 1.7033 0.5862 1.2824 2.1085 1.9844 2.5050
3-D solution Liew et al. (1993a) 0.2315 0.8523 0.5866 1.2855
HOPT Present 0.4 0.2251 0.7842 1.5014 0.5386 1.1436 1.8230 1.7383 2.1368
3-D solution Liew et al. (1993a) 0.2255 0.7883 0.5389 1.1466
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In the previous applications of the extended Kantorovich method for classical thin plate theory
(Eisenberger and Alexandrov, 2003) it has been shown that the initial assumed function is neither required
to satisfy the essential boundary conditions nor the natural boundary conditions and the quality of the
assumption influences only on the number of iterations. According to the present formulations of
the two higher order shear deformation theories the solution is the set of the dependent functions of the
displacements. Therefore, in order to obtain correct relations between the assumed functions, so that they
may satisfy any boundary conditions, the initial displacements are chosen as the lateral deflections and
bending rotations of a Timoshenko and high order beams (Eisenberger, 2003), taken from the appropriate
direction of the plate as a unit width strip. Although the beam�s shapes are not always congruent with the
plate�s displacement, the iteration convergence proves to be extremely fast. For most cases, only one to two
cycles of the iterations are required to produce almost convergent result. The subsequent iterations only
serve for more precious determination of the trailing digits. In the present work, the maximal tolerance
for the relative error between the iteration steps is taken as 0.0001%. Unlike most of the other numerical
methods, in which a better result is obtained by increasing of number of unknowns, the solution in the ex-
tended Kantorovich method is improved by continuous enhancement of the operator between successive
iteration steps, without additional unknowns.
Table 4
Frequency factor k for CCCC plates

Lx/Ly Theory h/Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

1 CPT – 3.6475 7.4375 13.3645 7.4375 10.9666 16.7203 13.3645 16.7203 22.2966
FOPT 0.1 3.2978 6.2877 10.4299 6.2877 8.8127 12.5568 10.4299 12.5568 15.8491

0.2 2.6889 4.6915 7.2270 4.6915 6.2994 8.5174 7.2270 8.5174 10.4108
0.3 2.1733 3.5862 5.3546 3.5862 4.7292 6.2578 5.3546 6.2578 7.5534
0.4 1.7897 2.8592 4.2192 2.8592 3.7435 4.9019 4.2192 4.9019 5.8833

HOPT 0.1 3.3046 6.3123 10.4946 6.3123 8.8594 12.6471 10.4946 12.6471 15.9858
0.2 2.7171 4.7751 7.4078 4.7751 6.4343 8.7458 7.4078 8.7458 10.7264
0.3 2.2244 3.7175 5.6084 3.7175 4.9270 6.5734 5.6084 6.5734 7.9742
0.4 1.8598 3.0206 4.5130 3.0206 3.9779 5.2711 4.5130 5.2164 6.3692

1.5 CPT – 2.7369 4.2266 6.7412 6.7002 8.0870 10.4502 12.6954 14.0476 16.3364
FOPT 0.1 2.5259 3.7994 5.8304 5.7375 6.7906 8.5182 9.9966 10.8951 12.3770

0.2 2.1206 3.0735 4.4808 4.3220 5.0470 6.1761 6.9575 7.5331 8.4519
0.3 1.7499 2.4727 3.4936 3.3156 3.8625 4.6768 5.1638 5.5813 6.2328
0.4 1.4612 2.0314 2.8232 2.6483 3.0881 3.7215 4.0739 4.3940 4.8944

HOPT 0.1 2.5297 3.8072 5.8469 5.7577 6.8173 8.5566 10.0559 10.9628 12.4587
0.2 2.1383 3.1049 4.5401 4.3953 5.1342 6.2898 7.1279 7.7167 8.6600
0.3 1.7835 2.5284 3.5911 3.4322 3.9968 4.8466 5.4020 5.8387 6.5234
0.4 1.5084 2.1067 2.9474 2.7926 3.2527 3.9269 4.3512 4.6685 5.2369

2 CPT – 2.4906 3.2254 4.5370 6.4830 7.2020 8.4382 12.4877 13.2076 14.4258
FOPT 0.1 2.3098 2.9528 4.0725 5.5710 6.1264 7.0664 9.8584 10.3440 11.1571

0.2 1.9500 2.4534 3.2912 4.2049 4.5988 5.2465 6.8685 7.1861 7.7090
0.3 1.6128 2.0130 2.6505 3.2252 3.5329 4.0197 5.0989 5.3333 5.7136
0.4 1.3481 1.6763 2.1826 2.5748 2.8294 3.2188 4.0233 4.2041 4.4994

HOPT 0.1 2.3131 2.9577 4.0804 5.5901 6.1487 7.0939 9.9163 10.4061 11.2259
0.2 1.9657 2.4744 3.3226 4.2759 4.6757 5.3339 7.0366 7.3596 7.8923
0.3 1.6433 2.0516 2.7058 3.3389 3.6530 4.1531 5.3332 5.5751 5.9694
0.4 1.3911 1.7296 2.2568 2.7154 2.9773 3.3823 4.2945 4.4700 4.8400
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5.1. Natural frequencies of thick plates

The free vibrations of rectangular thick plates are investigated by the proposed above method. Nine fre-
quency factors are obtained for each case based on the three plate theories (CPT, FOPT, HOPT). In all
calculations Poisson�s ratio m is taken as 0.3. For the FOPT solutions the shear correction factor k = 5/6
is adopted. For convenience of notation, the plates are described by a symbolism defining the boundary
conditions at their edges starting from x = 0 and x = Lx, y = 0, y = Ly, consequently. For example, CCFS
denotes a plate with clamped edges at x = 0 and x = Lx, free at y = 0 and simply supported at y = Ly. The
frequencies are expressed in terms of the dimensionless factor k ¼ xL2

y=p
2ðqh=DÞ1=2. The results obtained by

the three theories are presented in table form for the different configurations of the rectangular plates. For
each case of the boundary conditions the following properties are considered: aspect ratios Lx/Ly = 1.0, 1.5,
2.0 and thickness–width ratios h/Ly = 0.1, 0.2, 0.3, 0.4. Note that ratios h/Ly = 0.4 does not really ascribe
to a plate, but we use it for comparison and confirmation of the obtained results. The mode shapes of vibra-
tion are defined by m and n, where these integers indicate the number of half waves in the x- and y-direc-
tions, respectively.

5.1.1. SSSS plates

The natural frequency factors k for the SSSS plates calculated by using the three theories are given in
Table 1. The frequencies decrease with an increasing of the thickness–width ratio (h/Ly) for constant values
of Lx/Ly. It is seen that this effect is more pronounced for higher modes. Such behavior is due to the
Fig. 4. Comparison of normalized frequency for square plates: % difference CPT to HOPT.
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influence of rotary inertia and shear deformations. Also, the discrepancy between the CPT results and the
higher theories (HOPT, FOPT) becomes more significant because that CPT does not take into account the
additional flexibility due to the shear stresses. The differences between the results obtained by CPT and
HOPT for the plates with constant thickness are presented in Fig. 2.

From these figures and tables the influence of the aspect ratio Lx/Ly may be studied too. It may be ob-
served that the frequency factors decrease with an increasing of the aspect ratio Lx/Ly; moreover the dis-
crepancy between the theories decreases as well. This effect ascribes to more flexibility of the longer plates.

The comparison of the HOPT and FOPT results for the square plate is shown in Fig. 3.
It is seen that the difference between the results of these theories is neglected in the cases of lower thick-

ness–width ratios and exceeds the 1% only in the cases of relatively thick plates (h/Ly = 0.3, 0.4) for the
higher modes (two and more half waves).

Note that the values of the frequency factors obtained based on HOPT are greater than the FOPT re-
sults. There are a number of reasons for this effect:

• FOPT needs a shear correction factor to compensate the discrepancy between the assumed constant dis-
tributions of the transverse shear strains and its true parabolic variation. On the other hand HOPT
require no corrections and as a result the disparity between the results appears.

• The assumed HOPT displacements, which are generally smaller than the FOPT displacements, and the
additional high order shear and moment in HOPT lead to higher rigidity of the plate. Thus, the more
flexible FOPT scheme results in the smaller values of the natural frequency.
Fig. 5. Comparison of normalized frequency for square plates: % difference FOPT to HOPT.
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Comparisons of the results with existing solutions are given in Table 2. The results based on FOPT for-
mulation are compared with those obtained using Navier method by Reddy and Phan (1985) and Rayleigh–
Ritz method by Liew et al. (1993b); k = 0.82305 is used for these cases. Similar or more precise results are
achieved for every case. The comparison for HOPT results is made with Navier solutions of Reddy and
Phan (1985) and Matsunga (1994), and good agreement has been achieved. The attained accuracy is also
confirmed by comparing our results to the 3-D solution of Liew et al. (1993a).

5.1.2. SSFF plates

The dimensionless values of natural frequency for SSFF plates are compared with those obtained by
Liew et al. (1993b) in Table 3. Also, this table shows the similarity of the present HOPT results with the
3-D solution for SSFF plate of Liew et al. (1993a). Total agreement has been found in all the cases, as again
this is a separable case.

5.1.3. CCCC plates

The dimensionless values of natural frequencies for clamped rectangular plates are given in Table 4.
Comparison with the results for the SSSS plates shows that the frequency factors increase with higher
constraints (from simply supported to fully clamped). In order to study the boundary effect, the difference
between CPT and HOPT solutions are shown for several frequencies in Fig. 4.
Table 5
Frequency factor k for CFFF plates

Lx/Ly Theory h/Ly Mode

1,1 2,1 3,1 1,2 2,2 3,2 1,3 2,3 3,3

1 CPT – 0.3556 2.2212 6.2186 0.8668 3.1752 7.1760 2.7474 5.5366 9.8979
FOPT 0.1 0.3516 2.0946 5.4882 0.8222 2.9001 6.1961 2.5774 4.8598 8.1909

0.2 0.3418 1.8222 4.3136 0.7501 2.4526 4.7969 2.2816 3.9235 6.1386
0.3 0.3283 1.5386 3.4051 0.6704 2.0470 3.7651 1.9833 3.1896 4.7613
0.4 0.3126 1.2967 2.7662 0.5944 1.7296 3.0431 1.7284 2.6587 3.8384

HOPT 0.1 0.3516 2.0961 5.4981 0.8226 2.9032 6.2089 2.5786 4.8672 8.2119
0.2 0.3420 1.8307 4.3555 0.7522 2.4668 4.8465 2.2836 3.9512 6.2096
0.3 0.3288 1.5573 3.4757 0.6751 2.0744 3.8456 1.9909 3.2406 4.8735
0.4 0.3136 1.3247 2.8527 0.6025 1.7674 3.1327 1.7368 2.7309 3.9568

1.5 CPT – 0.1580 0.9850 2.7571 0.5266 1.7849 3.6476 2.4730 3.8588 6.0467
FOPT 0.1 0.1570 0.9577 2.5931 0.5039 1.6767 3.3360 2.3551 3.5136 5.3054

0.2 0.1546 0.8907 2.2523 0.4677 1.4976 2.8170 2.1208 2.9804 4.2643
0.3 0.1513 0.8065 1.9102 0.4260 1.3126 2.3494 1.8720 2.5061 3.4487
0.4 0.1473 0.7212 1.6265 0.3838 1.1502 1.9847 1.6447 2.1326 2.8592

HOPT 0.1 0.1570 0.9579 2.5946 0.5041 1.6777 3.3389 2.3555 3.5162 5.3119
0.2 0.1546 0.8921 2.2608 0.4685 1.5019 2.8304 2.1225 2.9908 4.2898
0.3 0.1514 0.8102 1.9287 0.4279 1.3219 2.3759 1.8737 2.5276 3.4983
0.4 0.1475 0.7279 1.6542 0.3871 1.1651 2.0226 1.6479 2.1657 2.9365

2 CPT – 0.0888 0.5530 1.5473 0.3756 1.2266 2.3605 2.3795 3.2010 4.5538
FOPT 0.1 0.0884 0.5438 1.4919 0.3603 1.1651 2.2072 2.2790 2.9689 4.1029

0.2 0.0875 0.5202 1.3630 0.3372 1.0654 1.9449 2.0651 2.5834 3.4217
0.3 0.0862 0.4879 1.2126 0.3101 0.9558 1.6821 1.8312 2.2153 2.8367
0.4 0.0848 0.4520 1.0710 0.2818 0.8525 1.4588 1.6154 1.9110 2.3869

HOPT 0.1 0.0884 0.5438 1.4922 0.3604 1.1656 2.2084 2.2788 2.9703 4.1060
0.2 0.0875 0.5206 1.3655 0.3377 1.0674 1.9504 2.0661 2.5887 3.4342
0.3 0.0863 0.4890 1.2187 0.3111 0.9603 1.6939 1.8314 2.2266 2.8627
0.4 0.0848 0.4541 1.0814 0.2836 0.8602 1.4774 1.6243 1.9255 2.4243



Fig. 6. Free vibration modes for CFFF square plate: h0/Ly = 0.1: HOPT solution.

Table 6
Comparison of the buckling load factors for SSSS plate (m = 0.3)

Lx/Ly Theory h/Ly Work Buckling load

Px Px + Py Py

1 FOPT 0.1 Present 3.7865 1.8932 3.7865
Reddy and Phan (1985) 3.7864 – 3.7864
Wang et al. (1994), Kitipornchai et al. (1993) 3.7865 1.8932 –

0.2 Present 3.2637 1.6319 3.2637
Reddy and Phan (1985) 3.2636 – 3.2636
Wang et al. (1994), Kitipornchai et al. (1993) 3.2637 1.6319 –

HOPT 0.1 Present 3.7866 1.8933 3.7866
Reddy and Phan (1985) 3.7865 – 3.7865

0.2 Present 3.2653 1.6327 3.2653
Reddy and Phan (1985) 3.2653 – 3.2653

1.5 FOPT 0.1 Present 4.0250 1.3879 2.0048
Wang et al. (1994), Kitipornchai et al. (1993) 4.0250 1.3879 –

0.2 Present 3.3048 1.2421 1.7941
Wang et al. (1994), Kitipornchai et al. (1993) 3.3048 1.2421 –

2 FOPT 0.1 Present 3.7865 1.2074 1.5093
Wang et al. (1994), Kitipornchai et al. (1993) 3.7865 1.2074 1.5093

0.2 Present 3.2637 1.0955 1.3694
Wang et al. (1994), Kitipornchai et al. (1993) 3.2637 1.0955 1.3694

0.3 Present 2.5726 0.9490 1.1862
Wang et al. (1994), Kitipornchai et al. (1993) – 1.1862

0.4 Present 1.9034 0.7992 0.9991
Wang et al. (1994), Kitipornchai et al. (1993) – – 0.9991
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From Fig. 4, one can find that the effect of the thickness ratio on the difference between the theories in-
creases with the stiffening of the boundary constraints of the plates. Thus, the thickness ratio of fully
clamped plates has the biggest effect on the natural frequencies. Moreover, it is shown that the discrepancy
between the theories increases with the increase in the frequency order. The boundary effect on the differ-
ence between HOPT and FOPT is shown in Fig. 5.

It is seen that the discrepancy between the shear deformation theories is most pronounced for the fully
clamped plates and decreases with decreasing of boundary constrains.

5.1.4. CFFF plates

The dimensionless values of natural frequencies for cantilevered rectangular plates are given in Table 5.
The first 15 mode shapes for a square cantilevered plate with thickness–width ratio h0/Ly = 0.1 are shown in
Fig. 6.

5.2. Buckling of thick plates

The stability of rectangular thick plates is studied using the proposed method. Two types of the
buckling load are considered, namely the uniform load applied on parallel edges in one direction and
Table 7
Dimensionless buckling loads and modes for SSSS plates

Lx/Ly Theory h/Ly Buckling load and mode Theories % difference

Px Px + Py Py Px Px + Py Py

1 CPT – 4.0000 1,1 2.0000 1,1 4.0000 1,1
FOPT 0.1 3.7865 1,1 1.8932 1,1 3.7865 1,1 HOPT–FOPT 0.00 0.00 0.00

0.2 3.2637 1,1 1.6319 1,1 3.2637 1,1 0.05 0.05 0.05
0.3 2.6533 1,1 1.3266 1,1 2.6533 1,1 0.20 0.20 0.20
0.4 1.9196 1,2 1.0513 1,1 1.9196 2,1 1.81 0.50 1.81

HOPT 0.1 3.7866 1,1 1.8933 1,1 3.7866 1,1 CPT–HOPT 5.34 5.34 5.34
0.2 3.2653 1,1 1.6327 1,1 3.2653 1,1 18.37 18.37 18.37
0.3 2.6586 1,1 1.3293 1,1 2.6586 1,1 33.54 33.53 33.54
0.4 1.9550 1,2 1.0567 1,1 1.9550 2,1 51.12 47.17 51.12

1.5 CPT – 4.3403 2,1 1.4444 1,1 2.0864 1,1
FOPT 0.1 4.0250 2,1 1.3879 1,1 2.0048 1,1 HOPT–FOPT 0.01 0.00 0.00

0.2 3.3048 2,1 1.2421 1,1 1.7941 1,1 0.09 0.03 0.03
0.3 2.5457 2,1 1.0570 1,1 1.5267 1,1 0.34 0.12 0.12
0.4 1.9196 3,1 0.8745 1,1 1.2632 1,1 1.16 0.30 0.30

HOPT 0.1 4.0253 2,1 1.3879 1,1 2.0048 1,1 CPT–HOPT 7.26 3.91 3.91
0.2 3.3077 2,1 1.2424 1,1 1.7946 1,1 23.79 13.99 13.99
0.3 2.5545 2,1 1.0582 1,1 1.5285 1,1 41.15 26.74 26.74
0.4 1.9421 2,1 0.8772 1,1 1.2670 1,1 55.25 39.27 39.27

2 CPT – 4.0000 2,1 1.2500 1,1 1.5625 1,1
FOPT 0.1 3.7865 2,1 1.2074 1,1 1.5093 1,1 HOPT–FOPT 0.00 0.00 0.00

0.2 3.2637 2,1 1.0955 1,1 1.3694 1,1 0.05 0.02 0.02
0.3 2.5726 3,1 0.9490 1,1 1.1862 1,1 0.44 0.09 0.09
0.4 1.9034 3,1 0.7992 1,1 0.9991 1,1 1.02 0.24 0.24

HOPT 0.1 3.7866 2,1 1.2075 1,1 1.5093 1,1 CPT–HOPT 5.34 3.40 3.40
0.2 3.2654 2,1 1.0958 1,1 1.3697 1,1 18.37 12.34 12.34
0.3 2.5839 3,1 0.9498 1,1 1.1873 1,1 35.40 24.01 24.01
0.4 1.9230 3,1 0.8012 1,1 1.0015 1,1 51.93 35.91 35.91
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uniform load applied on all edges. The symbolism and parameters of computation are the same as de-
scribed in the part of the free vibration. The buckling load P is expressed as a dimensionless value,
P ¼ NL2

y=p
2D.

5.2.1. SSSS plates
The comparisons of the dimensionless buckling loads for SSSS plates with the solutions of Reddy and

Phan (1985) by HOPT and FOPT, Wang et al. (1994) and Kitipornchai et al. (1993) by FOPT are given in
Table 6. Total agreement is achieved for all the results.

The values of the normalized buckling loads and shapes for simply supported rectangular plates are gi-
ven in Table 7. It is seen that the buckling load decreases with an increase in the thickness–width ratio.
Also, the discrepancy between the shear deformation and classical theories becomes more appreciable.
The first order theory is in fairly good agreement with the higher order theory and the maximum difference
between the values of buckling loads predicted by FOPT and HOPT is less than 2%. Moreover, it can be
observed that the shear stresses not only reduce the values of the buckling load but also cause changes in the
buckling shapes. To examine this point, more detailed computations have been performed for very small
steps of thickness–width ratio, and are summarized in Table 8.

From the table it can be observed that the two shear deformation theories result in different shapes
for the same thickness–width ratio (h0/Ly = 0.33) in the case of square plate and in the case of rectan-
gular plates FOPT leads to the change of modes for the smaller thickness–width ratios than HOPT (see
Fig. 7).

5.2.2. SSFF plates

Full agreement of the obtained results for SSFF plates with the solution of Kitipornchai et al. (1993) by
Rayleigh–Ritz method and Liew et al. (1996) by Levy method is shown in Table 9.
Table 8
Comparison of buckling shapes for SSSS plates

Lx/Ly h/Ly Buckling load Px and mode

FOPT HOPT

1 0.31 2.5941 1,1 2.5999 1,1
0.32 2.5356 1,1 2.5419 1,1
0.33 2.4651 2,1 2.4849 1,1
0.34 2.3765 2,1 2.4051 2,1
0.35 2.2917 2,1 2.3214 2,1
0.36 2.2106 2,1 2.2414 2,1
0.37 2.1330 2,1 2.1650 2,1
0.38 2.0587 2,1 2.0919 2,1
0.39 1.9876 2,1 2.0219 2,1

2 0.21 3.2033 2,1 3.2043 2,1
0.22 3.1423 2,1 3.1473 2,1
0.23 3.0808 2,1 3.0903 2,1
0.24 3.0192 2,1 3.0397 2,1
0.25 2.9575 2,1 2.9637 2,1
0.26 2.8959 2,1 3.2186 2,1
0.27 2.8142 3,1 2.8370 2,1
0.28 2.7317 3,1 2.7610 2,1
0.29 2.6511 3,1 2.6850 2,1
0.3 2.5726 3,1 2.5869 3,1



Fig. 7. Comparison of buckling shapes for SSSS plates, uniformly compressed in x-direction.
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5.2.3. CCCC plates

The comparison of buckling load factors for fully clamped rectangular plate with the solutions of Wang
et al. (1994) and Kitipornchai et al. (1993) are given in Table 10. Although the solution of the fully clamped
plates is not separable, the extended Kantorovich method leads to very good approximation of the first
eigenvalue and there are only small differences between the results (up to 0.4%). The dimensionless buckling
loads and shapes for CCCC rectangular plates are represented in Table 11. It is seen that the discrepancy
between the theories increases with an increase in the boundary constraints both in the values of buckling
loads and in the shapes. In order to study the influence of the thickness–width ratio on the stability of the
shear deformable plates, the normalized buckling loads for square plates are shown in Fig. 8 for different
boundary conditions. From the figure, one can find that the effect of the thickness–width ratio increases
with the increase of the boundary constraint of plates.

5.2.4. CFFF plates

The dimensionless values of buckling loads for cantilevered rectangular plates uniformly compressed in
the x-direction and in both directions are given in Table 12. It can be observed that the difference between
the theories is very small; moreover all of them lead to the same buckling shapes. This effect is due to the
higher flexibility of cantilevered plate. Note that for this case Mode 1, 1 symbolizes a quarter of a wave in
the x-direction and wide curve in the y-direction.



Table 9
Comparison of the buckling loads factors for SSFF plate (m = 0.3, k = 5/6)

Lx/Ly Theory h/Ly Work Buckling load

Px Px + Py Py

1 FOPT 0.05 Present 0.9433 0.9208 1.9469
Liew et al. (1996) 0.9207 1.9464

0.1 Present 0.9222 0.8977 1.8234
Liew et al. (1996) 0.8977 1.8233
Kitipornchai et al. (1993) 0.9222

0.15 Present 0.8908 0.8650 1.6839
Liew et al. (1996) 0.8650 1.6839

0.2 Present 0.8512 0.8248 1.5372
Kitipornchai et al. (1993) 0.8512

1.5 FOPT 0.1 Present 0.4102 0.4026 0.7025
Kitipornchai et al. (1993) 0.4102

0.2 Present 0.3949 0.3869 0.6300
Kitipornchai et al. (1993) 0.3949

2 FOPT 0.1 Present 0.2300 0.2270 0.3674
Liew et al. (1996) 0.2270 0.3674
Kitipornchai et al. (1993) 0.2300

0.2 Present 0.2250 0.2219 0.3354
Liew et al. (1996) 0.2219 0.3354
Kitipornchai et al. (1993) 0.2250

0.3 Present 0.2175 0.2144 0.3020
Liew et al. (1996) 0.2144 0.3020

Table 10
Comparison of the buckling load factors for CCCC plate, FOPT solution (m = 0.3, k = 5/6)

Lx/Ly h0/Ly Work Buckling load

Px Px + Py

1 0.1 Present 8.3231 4.5648
Kitipornchai et al. (1993) 8.2917
Wang et al. (1994) 4.5479

0.2 Present 5.3293 3.2529
Kitipornchai et al. (1993) 5.3156
Wang et al. (1994) 3.2399

1.5 0.1 Present 6.9748 3.6564
Kitipornchai et al. (1993) 6.9608
Wang et al. (1994) 3.6466

0.2 Present 4.7225 2.7460
Kitipornchai et al. (1993) 4.7153
Wang et al. (1994) 2.7367

2 0.1 Present 6.5819 3.5014
Kitipornchai et al. (1993) 6.5736
Wang et al. (1994) 3.4953

0.2 Present 4.5065 2.6524
Kitipornchai et al. (1993) 4.5026
Wang et al. (1994) 2.6458
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Table 11
Dimensionless buckling loads and modes for CCCC plates

Lx/Ly Theory h0/Ly Buckling load and mode

Px Px + Py Py

1 CPT – 10.0968 1,1 5.3148 1,1 10.0968 1,1
FOPT 0.1 8.3231 1,1 4.5648 1,1 8.3231 1,1

0.2 5.3293 3,1 3.2529 1,1 5.3293 1,3
0.3 3.2222 3,1 2.2183 1,1 3.2222 1,3
0.4 2.0547 3,1 1.5395 1,1 2.0547 1,3

HOPT 0.1 8.3513 1,1 4.5667 1,1 8.3513 1,1
0.2 5.4071 2,1 3.2640 1,1 5.4072 1,2
0.3 3.3306 2,1 2.2413 1,1 3.3306 1,2
0.4 2.2033 2,1 1.5727 1,1 2.2033 1,2

1.5 CPT – 8.3609 2,1 4.1278 1,1 5.8309 1,1
FOPT 0.1 6.9748 2,1 3.6564 1,1 5.1349 1,1

0.2 4.7225 4,1 2.7460 1,1 3.7996 1,1
0.3 3.0573 4,1 1.9558 1,1 2.6387 1,3
0.4 2.0189 4,1 1.4009 1,1 1.8208 1,3

HOPT 0.1 6.9934 2,1 3.6575 1,1 5.1389 1,1
0.2 4.7891 4,1 2.7532 1,1 3.8222 1,1
0.3 3.1494 3,1 1.9723 1,1 2.6911 1,3
0.4 2.1285 3,1 1.4257 1,1 1.9066 1,3

2 CPT – 7.8739 3,1 3.9275 1,1 4.8369 1,1
FOPT 0.1 6.5819 3,1 3.5014 1,1 4.3091 1,1

0.2 4.5065 5,1 2.6524 3,1 3.2600 1,1
0.3 2.9783 5,1 1.8983 3,1 2.3244 1,1
0.4 2.0011 5,1 1.3638 3,.1 1.6555 1,3

HOPT 0.1 6.5986 3,1 3.5023 1,1 4.3106 1,1
0.2 4.5848 3,1 2.6590 1,1 3.2696 1,1
0.3 3.0545 4,1 1.9143 3,1 2.3475 1,1
0.4 2.0999 4,1 1.3885 3,1 1.6938 1,1

Fig. 8. Dimensionless buckling loads for square plates; HOPT and CPT results.

1248 I. Shufrin, M. Eisenberger / International Journal of Solids and Structures 42 (2005) 1225–1251
6. Conclusions

The natural frequencies and buckling loads for rectangular thick plates with different boundary
conditions have been investigated by using the extended Kantorovich method. The two shear deformation



Table 12
Dimensionless buckling loads and modes for CFFF plates

Lx/Ly Theory h0/Ly Buckling load and mode

Px Px + Py

1 CPT – 0.2475 1,1 0.2472 1,1
FOPT 0.1 0.2449 1,1 0.2445 1,1

0.2 0.2378 1,1 0.2375 1,1
0.3 0.2283 1,1 0.2280 1,1
0.4 0.2171 1,1 0.2168 1,1

HOPT 0.1 0.2448 1,1 0.2444 1,1
0.2 0.2378 1,1 0.2375 1,1
0.3 0.2283 1,1 0.2279 1,1
0.4 0.2171 1,1 0.2167 1,1

1.5 CPT – 0.1097 1,1 0.1096 1,1
FOPT 0.1 0.1090 1,1 0.1089 1,1

0.2 0.1072 1,1 0.1071 1,1
0.3 0.1047 1,1 0.1046 1,1
0.4 0.1018 1,1 0.1017 1,1

HOPT 0.1 0.1090 1,1 0.1089 1,1
0.2 0.1071 1,1 0.1071 1,1
0.3 0.1046 1,1 0.1045 1,1
0.4 0.1018 1,1 0.1017 1,1

2 CPT – 0.0616 1,1 0.0616 1,1
FOPT 0.1 0.0614 1,1 0.0613 1,1

0.2 0.0606 1,1 0.0605 1,1
0.3 0.0595 1,1 0.0595 1,1
0.4 0.0584 1,1 0.0583 1,1

HOPT 0.1 0.0616 1,1 0.0616 1,1
0.2 0.0605 1,1 0.0605 1,1
0.3 0.0595 1,1 0.0595 1,1
0.4 0.0584 1,1 0.0583 1,1
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theories, in which the effects of both transverse shear stresses and rotary inertia are accounted for, have
been applied to the plate�s analysis. The large number of numerical examples demonstrates the applicability
and versatility of the present method. The advantages of the proposed method are as follows:

• The shape functions are exact solutions for the system of the differential equations of motion and they
are derived automatically. As a result, the solution for stability and free vibrations problem is the highly
accurate solution (depending only on the accuracy of the numerical calculations), as the only approxi-
mation is assuming one term separable solution.

• The exact solution is guaranteed when at least two parallel edges of the plate are simply supported and
the problem is separable (Levy and Navier cases). For other cases, it has been found that the proposed
simplest one terms separation of variables, Eqs. (3a)–(3c), leads to highly accurate solutions.

The results of the vibration and stability analysis of thick plates can be summarized as follows:

• The factors of the natural frequencies and the buckling loads for rectangular thick plates are dependent
on the thickness–width, side-aspect ratios and boundary conditions.
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• The natural frequency factors decrease and the discrepancy between results obtained by the three theo-
ries (CPT, HOPT, FOPT) increases with an increasing in the thickness of plate; this effect is more sig-
nificant for higher modes in the cases of lower thickness–width ratios and for all modes in the cases
of thicker plates. Note that difference between the two shear deformation theories is negligible for the
lower modes.

• The normalized natural frequencies and also the discrepancy between the theories decrease with a
decrease in the rigidity of plate, such as greater aspect ratio or less restraining boundary.

• The values of buckling loads factors decrease while the number of half waves in buckling shape increases
with an increase in the thickness–width ratio, and the discrepancy between the shear deformation and
classical theories becomes more appreciable. The first order theory is in fairly good agreement with
the higher order theory, but sometimes there is difference in the buckling shapes.
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